Nucleus Segmentation and Recognition of Uterine Cervical Pop-Smears using Region Growing Technique and Backpropagation Algorithm

영역 확장 기법과 오류 역전파 알고리즘을 이용한 자궁경부 세포진 영역 분할 및 인식

  • Published : 2006.06.01


The classification of the background and cell areas is very important research area because of the ambiguous boundary. In this paper, the region of cell is extracted from an image of uterine cervical cytodiagnosis using the region growing method that increases the region of interest based on similarity between pixels. Segmented image from background and cell areas is binarized using a threshold value. And then 8-directional tracking algorithm for contour lines is applied to extract the cell area. First, the extracted nucleus is transformed to RGB color that is the original image. Second, the K-means clustering algorithm is employed to classify RGB pixels to the R, G, and B channels, respectively. Third, the Hue information of nucleus is extracted from the HSI models that is the transformation of the clustering values in R, G, and B channels. The backpropagation algorithm is employed to classify and identify the normal or abnormal nucleus.


  1. 박종택, 노재윤, 조경병, '자궁경부암의 임상 및 병리조직학적연구,' 대한산부회지, Vol. 21, pp.545-57, 1978
  2. 사윤진, 최영철, 계정웅, '자궁경부암의 역학적 연구,' 대한산부회지,Vol.19,pp.181-190, 1976
  3. 서채원, 최석진, 홍민기, 이호영, 정우길, '자궁경부암의 진단에 관한 역학적 고찰 및 비정상 세포진 검사 결과에 대한 조직 검사와의 비교연구,' 가정의학회지, 제17권, 제1호, pp. 76-82, 1996
  4. Hugo Banda-Gamboa, Ian Ricketts, Alistair Cairns, Kudair Hussein, James H. Tucker and Nasseem Husain, 'Automation in cervical cytology : an overview,' Analytical Cellular Pathology, 4, pp. 25-48, 1992
  5. 남궁성은, 자궁경부 세포진 검사의 자동화 시스템에 대한 연구, 보건복지부
  6. 강미영, 하진영, 김백섭, 이헌길, '자궁경부세포 인식을 위한 가변블록기반 특징 추출 기법,' 정보통신논문지, 제5집, pp.66-71, 2001
  7. K. B. Kim, C. S. Park, 'An Enhanced Fuzzy Multilayer Perceptron,' Lecture Notes in Computer Science, LNCS 3316, Springer, pp.977-982, 2004