DOI QR코드

DOI QR Code

GENERALIZED TOEPLITZ ALGEBRA OF A CERTAIN NON-AMENABLE SEMIGROUP

  • Published : 2006.05.01

Abstract

We analyze a detailed picture of the algebraic structure of $C^*$-algebras generated by isometric representations of the non-amenable semigroup P = {0,2,3,...,N,...}.

Keywords

isometric homomorphism;left regular isometric representation;reduced semigroup $C^*$-algebra;semigroup $C^*$-algebra;Toeplitz algebra

References

  1. L. A. Coburn, The C$^{\ast}$-algebra generated by an isometry, I, Bull. Amer. Math. Soc. 73 (1967), 722-726 https://doi.org/10.1090/S0002-9904-1967-11845-7
  2. L. A. Coburn, The C$^{\ast}$-algebra generated by an isometry, II, Trans. Amer. Math. Soc. 137 (1969), 211-217 https://doi.org/10.2307/1994797
  3. K. R. Davidson and D. R. Pitts, The algebraic structure of non-commutative analytic Toeplitz algebras, Math. Ann. 311 (1998), no. 2, 275-303 https://doi.org/10.1007/s002080050188
  4. R. G. Douglas, On the C$^{\ast}$-algebra of a one-parameter semigroup of isometries, Acta Math. 128 (1972), no. 3-4, 143-151 https://doi.org/10.1007/BF02392163
  5. S. Y. Jang, Reduced crossed products by semigroups of automorphisms, J. Ko- rean Math. Soc. 36 (1999), no. 1, 97-107
  6. M. Laca and I. Raeburn, Semigroup crossed products and the Toeplitz algebras of nonabelian groups, J. Funct. Anal. 139 (1996), no. 2, 415-440 https://doi.org/10.1006/jfan.1996.0091
  7. G. J. Murphy, Crossed products of C$^{\ast}$-algebras by semigroups of automorphisms, Proc. London Math. Soc. (3) 68 (1994), no. 2, 423-448
  8. A. Nica, C$^{\ast}$-algebras generated by isometries and Wiener-Hopf operators, J. Operator Theory 27 (1992), no. 1, 17-52
  9. G. K. Pedersen, C$^{\ast}$-algebras and their automorphism groups, London Mathe- matical Society Monograph 14, Academic Press, London, 1979
  10. P. S. Muhly, A structure theory for isometric representations of a class of semi- groups, J. Reine Angew. Math. 255 (1972), 135-154
  11. J. Cuntz, Simple C$^{\ast}$-algebras generated by isometries, Comm. Math. Phys. 57 (1977), no. 2, 173-185 https://doi.org/10.1007/BF01625776

Cited by

  1. C*-algebras generated by cancellative semigroups vol.51, pp.1, 2010, https://doi.org/10.1007/s11202-010-0002-y
  2. C*-algebras generated by semigroups vol.53, pp.10, 2009, https://doi.org/10.3103/S1066369X09100089
  3. On the extension of the Toeplitz algebra vol.34, pp.4, 2013, https://doi.org/10.1134/S1995080213040033
  4. WIENER-HOPF C*-ALGEBRAS OF STRONGL PERFORATED SEMIGROUPS vol.47, pp.6, 2010, https://doi.org/10.4134/BKMS.2010.47.6.1275