DOI QR코드

DOI QR Code

Sliding Mode Control with RLSN Predictor-Based Perturbation Estimation

RLSN 예측기 기반 섭동 추정기를 갖는 슬라이딩 모드 제어

  • 남윤주 (부산대학교 지능기계공학과) ;
  • 이육형 (부산대학교 기계기술연구소) ;
  • 박명관 (부산대학교 기계공학부 및 기계기술연구소)
  • Published : 2006.08.01

Abstract

This paper presents the sliding mode control with the perturbation estimator for a nonlinear control system in the presence of perturbations including external disturbances, unpredictable parameter variations, ana unstructured dynamics. The proposed perturbation estimator is based on the Recursive Linear Smoothed Newton predictive algorithm so that it is effective to attenuate an undesired noise in high frequency band and to predict the present perturbation signal from the previous ones. Compared to conventional sliding mode control (SMC) and sliding mode control with perturbation estimation (SMCPE) introduced by Elmali and Olgac, the control algorithm proposed in this study can offer better tracking control performances and more feasible estimation characteristics. The effectiveness and superiority of the proposed control strategy are demonstrated by a series of simulations on the position tracking control of a simple two-link robot manipulator subject to velocity feedback signals including white noises.

Keywords

Perturbation Estimation;Recursive Linear Smoothed Newton Predictor;Robust Control;Sliding Mode Control

References

  1. Kim, N. I., Lee, C. w., and Chang, P. R., 1998, 'Sliding Mode Control with Perturbation Estimation: Application to Motion Control of Parallel Manipulator,' Control. Eng. Practice, Vol. 6, No. 11, pp. 1321-1330 https://doi.org/10.1016/S0967-0661(98)00090-2
  2. Chen, J. W., Choi, S. B., Song, H. J., and Ham, J. H., 2004, 'Position Control of an AC Servo Motor Using Sliding Mode Controller with Disturbance Estimator,' Int. J. Precis. Eng. Manuf., Vol. 5, No .4, pp. 14-20
  3. Song, G, Longman, R. W., and Mukherjee, R., 1999, 'Integrated Sliding-Mode Adaptive-Robust Control,' IEE Proc.-Control Theory and Appl., Vol. 146, No. 4, pp.341-347 https://doi.org/10.1049/ip-cta:19990435
  4. Roh, Y. H., and Oh, J. H., 2000, 'Sliding Mode Control with Uncertainty Adaptation for Uncertain Input-Delay Systems,' Int. J. Control, Vol. 73, No. 13, pp. 1255-1260 https://doi.org/10.1080/002071700417894
  5. Lee, S. M. and Lee, B. H., 1999, 'A Discrete-Time Sliding Mode Controller and Observer with Computation Time Delay,' Control Eng. Practice, Vol. 7, No. 8, pp. 943-955 https://doi.org/10.1016/S0967-0661(99)00044-1
  6. Utkin, V I., Guldner, J., and Shi, J., 1999, Sliding Mode Control in Electromechanical Systems, Taylor & Francis, London
  7. Young, K. D., Utkin, V I., and Ozguner, D., 1999, 'A Control Engineer's Guide to Sliding Mode Control,' IEEE Trans. Control Syst. Technol, Vol. 7, No. 3, pp. 328-342 https://doi.org/10.1109/87.761053
  8. Siotine, J.-J. E. and Sastry, S. S., 1983, 'Tracking Control of Nonlinear Systems Using Sliding Surfaces with Applications to Robot Manipulators,' Int. J. Control, Vol. 38, No. 2, pp. 465-492 https://doi.org/10.1080/00207178308933088
  9. Kachroo, P. and Tomizuka, M., 1996, 'Chattering Reduction and Error Convergence in the Sliding-Mode Control of a Class of Nonlinear Systems,' IEEE Trans. Autom. Control, Vol. 41, No. 7, pp. 1063-1068 https://doi.org/10.1109/9.508917
  10. Zhang, D. Q. and Panda, S. K., 1999, 'Chattering-Free and Fast-Response Sliding Mode Controller,' IEE Proc.-Control Theory and Appl., Vol. 146, No. 2, pp. 171-177 https://doi.org/10.1049/ip-cta:19990518
  11. Chan, S. P., 1996, 'An Approach to Perturbation Compensation for Variable Structure Systems,' Automatica, Vol. 32, No. 3, pp. 469-473 https://doi.org/10.1016/0005-1098(95)00161-1
  12. Elmali, H. and Olgac, N., 1992, 'Theory and Implementation of Sliding Mode Control with Perturbation Estimation (SMCPE),' Proc. IEEE into canf. Robot. Autom., Nice, France, pp. 2114-2119 https://doi.org/10.1109/ROBOT.1992.219969
  13. Elmali, H. and Olgac, N., 1996, 'Implementation of Sliding Mode Control with Perturbation Estimation (SMCPE),' IEEE Trans. Control Syst. Technol., Vol. 4, No. 1, pp. 79-85 https://doi.org/10.1109/87.481770
  14. Youcef-Toumi, K. and Ito, O., 1990, 'A Time Delay Controller for Systems with Unknown Dynamics,' J. Dyn. Syst. Meas. Control-Trans, ASME, Vol. 112, No. 1. pp. 133-142 https://doi.org/10.1115/1.2894130
  15. Youcef-Toumi, K. and Wu, S.-T., 1992, 'Input/Output Linearization Using Time Delay Control,' J. Dyn. Syst. Meas. Control-Trans, ASME, Vol. 114, pp. 204-212 https://doi.org/10.1115/1.2896516
  16. Ovaska, S. J. and Vainio, 0., 1992, 'Recursive Linear Smoothed Newton Predictors for Polynomial Extrapolation,' IEEE Trans. Instrum. Meas., Vol. 41, No. 4, pp. 510-516 https://doi.org/10.1109/19.155917
  17. Valiviita, S., Ovaska, S. J., and Vainio, O., 1999, 'Polynomial Predictive Filtering in Control Instrumentation: A Review,' IEEE Trans. Ind. Electron., Vol. 46, No. 5, pp. 876-888 https://doi.org/10.1109/41.793335
  18. Heinonen, P. and Neuvo, Y., 1988, 'FIR-Mdian Hybrid Filters with Predictive FIR substructures,' IEEE Trans. Acoust. Speech Sig. Process, Vol. 36, No. 6, pp. 892-899 https://doi.org/10.1109/29.1600
  19. Phillips, C. L. and Nagle, H. T., 1997, Digital Control System Analysis and Design, Prentice Hall, London