DOI QR코드

DOI QR Code

Electrothermal Crack Analysis in a Finite Conductive Layer with Temperature-dependent Material Properties

온도 의존성 물성치를 가지는 유한한 전도층에서의 전기/열하중을 받는 균열의 해석

  • 장용훈 (연세대학교 기계공학부) ;
  • 이상영 (연세대학교 대학원 기계공학부)
  • Published : 2006.08.01

Abstract

The method of Greenwood and Williamson is extended to obtain a solution to the coupled non-linear problem of steady-state electrical and thermal conduction across a crack in a conductive layer, for which the electrical resistivity and thermal conductivity are functions of temperature. The problem can be decomposed into the solution of a pair of non-linear algebraic equations involving boundary values and material properties. The new mixed-boundary value problem given from the thermal and electrical boundary conditions for the crack in the conductive layer is reduced in order to solve a singular integral equation of the first kind, the solution of which can be expressed in terms of the product of a series of the Chebyshev polynomials and their weight function. The non-existence of the solution for an infinite conductor in electrical and thermal conduction is shown. Numerical results are given showing the temperature field around the crack.

Keywords

Electrical/Thermal Conduction;Crack;Temperature-Dependent Material Peroperty

References

  1. Saka, M. and Abe, H., 1992, 'Path-Independent Integrals for Heat Conduction Analysis in Electrothermal Crack Problems,' J. Thermal Stresses, Vol. 15, pp. 71-83 https://doi.org/10.1080/01495739208946121
  2. Olsson, J., 2001, 'Self-heating Effects in SOI Bipolar Transistors,' Microelectron. Eng., Vol .56, pp. 339-352 https://doi.org/10.1016/S0167-9317(01)00571-8
  3. Kohlrausch, F., 1900, 'Uber den Stationaren Temperaturzustand Eines Elektrisch Geheizten Leiters,' Ann. Phys.Lpz, Vol. 1, pp. 132-158
  4. Greenwood, J. A. and Williamson, J. B. P., 1958, 'Electrical Conduction in Solids: II. Theory of Temperature-Dependent Conductors,' Proc. R. Soc. Lond. A, Vol. 246, pp. 13-31 https://doi.org/10.1098/rspa.1958.0103
  5. Diesselhorst, H. 1900, 'Uber das Problem Eines Elektrisch Erwarmten Leiters,' Ann. Phys. Lpz, Vol. 1, pp.312-325
  6. Fournet, G., 1997, 'Phenomena in Conductors Having Temperature Dependent Electrical and Thermal Conductivities,' J. Physique III, Vol. 7, pp. 2003-2029 https://doi.org/10.1051/jp3:1997239
  7. Jang, Y. H. Barber, J. R. and Hu; S. J., 1998, 'Electrical Conductance Between COnductors with Dissimilar Temperature-Dependent Material Properties,' J. Phys. D: Appl. Phys, Vol. 31, pp. 3197-3205 https://doi.org/10.1088/0022-3727/31/22/004
  8. Wang. P, Tian, Z. G. and Bai, X. Z., 2003, 'Electrothermal Stress in Conductive Body with Collinear Cracks,' Theor. Appl. Fract. Mech,' Vol. 40 pp. 187-195 https://doi.org/10.1016/S0167-8442(03)00045-4
  9. Choi, H. J. and Thangitharn, S., 1991 'Heat Conduction in Laminated Anisotropic Composites with a Debonding,' Int. J. Eng. Sci, Vol. 29, pp. 819-829 https://doi.org/10.1016/0020-7225(91)90004-M
  10. Muskhelishvili, N. I., 1953, 'Singular Integral Equations,' Noordhoff, Groningen, pp. 76-105
  11. Stroud, A. H. and Secrest, D. 1966, 'Gaussian Quadrature Formula,' Prentice Hall, Englewood Cliffs
  12. Friedman, B., 1969, 'Lectures on ApplicationOriented Mathematics,' Holden-Day, San Francisco, pp. 1-35