A Study on the Robust Optimal Supporting Positions of TFT-LCD Glass Panel

TFT-LCD 용 유리기판의 강건 최적 지지 위치의 선정에 관한 연구

  • 허재성 (한국과학기술원 대학원 기계공학과) ;
  • 정병창 (한국타이어 중앙 연구소) ;
  • 이태윤 (삼성전자) ;
  • 곽병만 (한국과학기술원 기계공학과)
  • Published : 2006.08.01


In this paper we present robust optimal supporting positions for large glass panels used for TFT-LCD monitors when they are stored in a cassette during manufacturing process. The criterion taken is to minimize their maximum deflection. Since they are supported by some supports and have large deformations, contact analysis with a geometrically nonlinear effect is necessary. In addition, the center of a panel can not be positioned exactly as intended and should be considered as uncertainties. To take into account of these effects, the mean and the standard deviation of system response functions, particularly the deflection of the panels, need be calculated. A function approximation moment method (FAMM) is utilized to estimate them. It is a special type of response surface methodology for structural reliability analysis and can be efficiently used to estimate the two stochastic properties, that is, the system performance and the perturbations caused by uncertainties. For a design purpose, they are to be minimized simultaneously by some optimization algorithm to obtain robust optimal supporting positions.


TFT-LCD Glass Panel;Supporting Positions;Uncertainties;Robust Optimal Design;Function Approximation Moment Method


  1. Kim, J. S., 2001, 'TFT-LCD 개요 및 연구 개발 동향,' 기계저널, Vol. 41, No.5, pp. 37-41
  2. Choi, G. H., Han, C. W., and Lee, S. R., 2002, 'The Study on the Development of Composite Robot Hand for TFT-LCD Glass Transport,' Trans. of the KSME (A), Vol. 26, No. 7, pp.1357-1365
  3. Oh, J. H. and Lee, D. G, 1999, 'Composite robot end effector for manipulating large LCD glass panels,' Composite Structures, Vol. 47, pp. 497-506
  4. Phadke, M. S., 1989, Quality engineering using robust design, Prentice-Hall International Inc
  5. Kackar, R. N., 1985, 'Off-line Quality Control, Parameter Design, and the Taguchi Methods,' Journal of Quality Technology, Vol. 17, pp.176-188
  6. Nair, V. N., 1992, 'Taguchi's Parameter Design: A Panel Discussion,' Technometrics, Vol. 34, No. 2, pp.127-161
  7. Balling, R. J., Free, J. C., and Parkinson, A. R., 1986, 'Consideration of Worst Case Manufacturing Tolerances in Design Optimization,' Vol. 108, pp. 438-441
  8. Parkinson, A., Sorensen, C., and Pourhassan, N., 1993, 'A General Approach for Robust Optimal Design, 'Journal of Mechanical Design,' Vol. 115, pp. 74-80
  9. Lee, K. W., and Park, G. J., 2001, 'Robust Optimization Considering Tolerances of Design Variables,' Computers & Structures, Vol. 79, pp. 77-86
  10. Sundaresan, S., Ishii, K., and Houser, D. R., 1991, 'A Procedure Using Manufacturing Variance to Design Gears with Minimum Transmission Error,' Journal of Mechanical Design, Vol. 113, pp. 318-324
  11. Han, J. S., and Kwak, B. M., 2001, 'Robust Optimal Design of a Vibratory Microscope Considering Fabrication Errors,' Journal of Micromechanics and Microengineering, pp. 662-671
  12. Huh, J. S., Kim, K. H., Kang, D. W., Gweon, D. G, and Kwak, B. M., 2006, 'Performance Evaluation of Precision Nanopositioning Devices Caused by Uncertainties Due to Tolerances Using Function Approximation Moment Method,' Review of Scientific Instruments, It will be published
  13. Johnson, N. L., Kotz, S., and Balakrishnan, 1994, Continuous Univariate Distributions, John Wiley & Sons
  14. Melchers, R. E., 1999, Structural Reliability Analysis and Prediction, John Wiley & Sons
  16. So, A. K. W. and Chan, S. L., 1996, 'Nonlinear Finite Element Analysis of Glass Panels,' Engineering Structures, Vol. 18, No. 8, pp. 645-652

Cited by

  1. Design optimization of conveyor rollers arrangement for stable flat-panel display (FPD) glass transfer vol.32, pp.7, 2018,