DOI QR코드

DOI QR Code

ON THE SOLUTIONS OF A BI-JENSEN FUNCTIONAL EQUATION AND ITS STABILITY

  • Bae, Jae-Hyeong (Department of Mathematics and Applied Mathematics, Kyung Hee University) ;
  • Park, Won-Gil (National Institute for Mathematical Sciences)
  • Published : 2006.08.01

Abstract

In this paper, we obtain the general solution and the stability of the hi-Jensen functional equation $$4f(\frac {x+y} 2,\;\frac {z+w} 2)=f(x,\;z)+f(x,\;w)+f(y,\;z)+f(y,\;w)$$.

Keywords

solution;stability;bi-Jensen mapping;functional equation

References

  1. J. Aczel, and J. Dhombres, Functional equations in several variables, Cambridge Univ. Press, Cambridge, 1989
  2. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436 https://doi.org/10.1006/jmaa.1994.1211
  3. S.-H. Lee, Stability of a quadratic Jensen type functional equation, Korean J. Comput. & Appl. Math. (Series A) 9 (2002), no. 1, 389-399
  4. Y.-W. Lee, On the stability of a quadratic Jensen type functional equation, J. Math. Anal. Appl. 270 (2002), no. 2, 590-601 https://doi.org/10.1016/S0022-247X(02)00093-8
  5. S. M. Ulam, A Collection of Mathematical Problems, Interscience Publishers, New York, 1960
  6. Y.-W. Lee, Stability of a generalized quadratic functional equation with Jensen type, Bull. Korean Math. Soc. 42 (2005), no. 1, 57-73 https://doi.org/10.4134/BKMS.2005.42.1.057
  7. Th. M. Rassias, On the stability of the linear mappings in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300
  8. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224

Cited by

  1. Some remarks on the stability of the multi-Jensen equation vol.11, pp.5, 2013, https://doi.org/10.2478/s11533-013-0215-y
  2. Stability of multi-Jensen mappings in non-Archimedean normed spaces vol.53, pp.2, 2012, https://doi.org/10.1063/1.3684746
  3. On the stability of multi-Jensen mappings in β-normed spaces vol.25, pp.11, 2012, https://doi.org/10.1016/j.aml.2012.02.049
  4. Stability of the multi-Jensen equation vol.363, pp.1, 2010, https://doi.org/10.1016/j.jmaa.2009.08.021
  5. Remarks on the Hyers–Ulam stability of some systems of functional equations vol.219, pp.8, 2012, https://doi.org/10.1016/j.amc.2012.10.057
  6. On Solution and Stability of a Two-Variable Functional Equations vol.2011, 2011, https://doi.org/10.1155/2011/527574
  7. On an equation characterizing multi-cauchy-jensen mappings and its Hyers-Ulam stability vol.35, pp.6, 2015, https://doi.org/10.1016/S0252-9602(15)30059-X
  8. On the Hyers-Ulam-Rassias Stability of the Bi-Jensen Functional Equation vol.48, pp.4, 2008, https://doi.org/10.5666/KMJ.2008.48.4.705
  9. ON THE GENERALIZED HYERS-ULAM STABILITY OF A BI-JENSEN FUNCTIONAL EQUATION ON A PUNCTURED DOMAIN vol.25, pp.2, 2012, https://doi.org/10.14403/jcms.2012.25.2.159
  10. On Stability and Hyperstability of an Equation Characterizing Multi-Cauchy–Jensen Mappings vol.73, pp.2, 2018, https://doi.org/10.1007/s00025-018-0815-8