DOI QR코드

DOI QR Code

FUZZY 2-(0-OR 1-)PRIME IDEALS IN SEMIRINGS

  • Dheena, P. (Department of Mathematics, Annamalai University) ;
  • Coumaressane, S. (Department of Mathematics, Annamalai University)
  • Published : 2006.08.01

Abstract

In this Paper three different types of fuzzy Prime ideals are introduced. Condition is obtained for a fuzzy 2-prime ideal will have two elements in its range. It has been shown that A is fuzzy 2-prime ideal of the semiring R if and only if 1-A is a fuzzy $m_2-system$ in R.

Keywords

semiring;fuzzy ideal;fuzzy point;fuzzy 2-(0-or 1-) prime ideal;fuzzy $m_2(m_0\;or\;m_1)-system$

References

  1. S. Abou-Zaid, On fuzzy subnear-rings and ideals, Fuzzy Sets and Systems, 44 (1991), no. 1, 139-146 https://doi.org/10.1016/0165-0114(91)90039-S
  2. P. Sivaramakrishna Das, Fuzzy groups and level subgroups, J. Math. Anal. Appl. 84 (1981), no. 1, 264-269 https://doi.org/10.1016/0022-247X(81)90164-5
  3. V. N. Dixit, R. Kumar, and N. Ajmal, Fuzzy ideals and fuzzy prime ideals of a ring, Fuzzy Sets and Systems 44 (1991), no. 1, 127-138 https://doi.org/10.1016/0165-0114(91)90038-R
  4. S. Ghosh, Fuzzy k-ideals of semirings, Fuzzy Sets and Systems 95 (1998), 103-108 https://doi.org/10.1016/S0165-0114(96)00306-5
  5. C. B. Kim, Isomorphism theorems and fuzzy k-ideals of k-semirings, Fuzzy Sets and Systems 112 (2000), 333-342 https://doi.org/10.1016/S0165-0114(98)00018-9
  6. R. Kumar, Fuzzy Algebra Volume I, University of Delhi Publication Division, 1993
  7. W. J. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems 8 (1982), no. 2, 133-139 https://doi.org/10.1016/0165-0114(82)90003-3
  8. W. J. Liu, Operations on fuzzy ideals, Fuzzy Sets and Systems 11 (1983), no. 1, 31-41 https://doi.org/10.1016/S0165-0114(83)80068-2
  9. D. S. Malik and J. N. Mordeson, Fuzzy prime ideals of a ring, Fuzzy Sets and Systems 37 (1990), no. 1, 93-98 https://doi.org/10.1016/0165-0114(90)90066-F
  10. T. K. Mukherjee and M. K. Sen, On fuzzy ideals of a ring I, Fuzzy Sets and Systems 21 (1987), no. 1, 99-104 https://doi.org/10.1016/0165-0114(87)90155-2
  11. T. K. Mukherjee and M. K. Sen, Prime fuzzy ideals in rings, Fuzzy Sets and Systems 32 (1989), no. 3, 337-341 https://doi.org/10.1016/0165-0114(89)90266-2
  12. A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512-517 https://doi.org/10.1016/0022-247X(71)90199-5
  13. M. K. Sen and M. R. Adhikari, On k-ideals of semirings, Internat. J. Math. Math. Sci. 15 (1992), no. 2, 347-350 https://doi.org/10.1155/S0161171292000437
  14. L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353 https://doi.org/10.1016/S0019-9958(65)90241-X
  15. T. K. Dutta and B. K. Biswas, Fuzzy k-ideals of semirings, Bull. Calcutta Math. Soc. 87 (1995), no. 1, 91-96
  16. U. M. Swamy and K. L. N. Swamy, Fuzzy prime ideals of rings, J. Math. Anal. Appl. 134 (1988), no. 1, 94-103 https://doi.org/10.1016/0022-247X(88)90009-1
  17. S. I. Baik and H. S. Kim, On fuzzy k-ideals in semirings, Kangweon-Kyungki Math. Jour. 8 (2000), 147-154
  18. Z. Yue, Prime L-fuzzy ideals and primary L-fuzzy ideals, Fuzzy Sets and Systems 27 (1988), no. 3, 345-350 https://doi.org/10.1016/0165-0114(88)90060-7
  19. X. Y. Xie, On prime, quasi-prime, weakly quasi-prime fuzzy left ideals of semi-groups, Fuzzy Sets and Systems 123 (2001), no. 2, 239-249 https://doi.org/10.1016/S0165-0114(00)00091-9

Cited by

  1. Fuzzy ideals of semirings vol.20, pp.8, 2011, https://doi.org/10.1007/s00521-011-0569-7
  2. ON FUZZY k−IDEALS, k−FUZZY IDEALS AND FUZZY 2−PRIME IDEALS IN Γ−SEMIRINGS vol.34, pp.5_6, 2016, https://doi.org/10.14317/jami.2016.405
  3. Proper Fuzzification of Prime Ideals of a Hemiring vol.2012, 2012, https://doi.org/10.1155/2012/801650