DOI QR코드

DOI QR Code

A STRONG SOLUTION FOR THE WEAK TYPE II GENERALIZED VECTOR QUASI-EQUILIBRIUM PROBLEMS

  • Kim, Won-Kyu (Department of Mathematics Education, Chungbuk National University) ;
  • Kum, Sang-Ho (Department of Mathematics Education, Chungbuk National University)
  • Published : 2006.08.01

Abstract

The aim of this paper is to give an existence theorem for a strong solution of generalized vector quasi-equilibrium problems of the weak type II due to Hou et al. using the equilibrium existence theorem for 1-person game, and as an application, we shall give a generalized quasivariational inequality.

Keywords

generalized vector quasi-equilibrium problems;strong solution;monotone;C(x)-quasiconvex-like multifunction

References

  1. Q. H. Ansari, I. V. Konnov, and J. C. Yao, On generalized vector equilibrium problems, Nonlinear Anal. 47 (2001), no. 1, 543-554 https://doi.org/10.1016/S0362-546X(01)00199-7
  2. E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), no. 1-4, 123-145
  3. O. Chadli and H. Riahi, On generalized vector equilibrium problems, J. Global Optim. 16 (2000), no. 1, 33-41 https://doi.org/10.1023/A:1008381318560
  4. M.-P. Chen, L.-J. Lin, and S. Park, Remarks on generalized quasi-equilibrium problems, Nonlinear Anal. 52 (2003), no. 2, 433-444 https://doi.org/10.1016/S0362-546X(02)00106-2
  5. Y. Chiang, O. Chadli, and J. C. Yao, Existence of solutions to implicit vector variational inequalities, J. Optim. Theory Appl. 116 (2003), no. 2, 251-264 https://doi.org/10.1023/A:1022472103162
  6. J.-Y. Fu, Generalized vector quasi-equilibrium problems, Math. Method Oper. Res. 52 (2000), no. 1, 57-64 https://doi.org/10.1007/s001860000058
  7. N. X. Hai and P. Q. Khanh, Existence of solutions to general quasi-equilibrium problems and applications, to appear
  8. L.-J. Lin, Q. H. Ansari, and J.-Y. Wu, Geometric properties and coincidence theorems with applications to generalized vector equilibrium problems, J. Optim. Theory Appl. 117 (2003), no. 1, 121-137 https://doi.org/10.1023/A:1023656507786
  9. E. Michael, A note on paracompact spaces, Proc. Amer. Math. Soc. 4 (1953), 831-838
  10. W. Oettli and D. Schlager, Generalized vectorial equilibria and generalized monotonicity, Functional analysis with current applications in science, technology and idustry (Aligarh, 1996), 145-154
  11. M.-H. Shih and K. K. Tan, Generalized quasivariational inequalities in locally convex topological vector spaces, J. Math. Anal. Appl. 108 (1985), no. 2, 333-343 https://doi.org/10.1016/0022-247X(85)90029-0
  12. X. M. Yang and S. Y. Liu, Three kinds of generalized convexity, J. Optim. Theory Appl. 86 (1995), no. 2, 501-513 https://doi.org/10.1007/BF02192092
  13. N. C. Yannelis and N. D. Prabhakar, Existence of maximal elements and equilibria in linear topological spaces, J. Math. Econom. 12 (1983), no. 3, 233-245 https://doi.org/10.1016/0304-4068(83)90041-1
  14. G. X.-Z. Yuan, The Study of Minimax Inequalities and Applications to Economies and Variational Inequalities, Mem. Amer. Math. Soc. 132 (1998), no. 625, x+140 pp
  15. S. Kum, G. M. Lee, and J. C. Yao, An existence result for implicit vector variational inequality with multifunctions, Appl. Math. Lett. 16 (2003), no. 4, 453-458 https://doi.org/10.1016/S0893-9659(03)00019-3
  16. W. Oettli and D. Schlager, Generalized vectorial equilibria and generalized monotonicity, Functional analysis with current applications in science, technology and idustry, Pitman Res. Notes Math. Ser., 377, Longman, Harlow, 1998
  17. S. H. Hou, H. Yu, and C. Y. Chen, On vector quasi-equilibrium problems with set-valued maps, J. Optim. Theory Appl. 119 (2003), no. 3, 485-498 https://doi.org/10.1023/B:JOTA.0000006686.19635.ad
  18. W. Oettli, A remark on vector-valued equilibria and generalized monotonicity, Acta Math. Vietnam. 22 (1997), no. 1, 213-221
  19. F. Ferro, A minimax theorem for vector valued functions, J. Optim. Theory Appl. 60 (1989), no. 1, 19-31. https://doi.org/10.1007/BF00938796