DOI QR코드

DOI QR Code

THE GENERAL LINEAR GROUP OVER A RING

  • Published : 2006.08.01

Abstract

Let m be any positive integer, R be a ring with identity, $M_m(R)$ be the matrix ring of all m by m matrices eve. R and $G_m(R)$ be the multiplicative group of all n by n nonsingular matrices in $M_m(R)$. In this pape., the following are investigated: (1) for any pairwise coprime ideals ${I_1,\;I_2,\;...,\;I_n}$ in a ring R, $M_m(R/(I_1{\cap}I_2{\cap}...{\cap}I_n))$ is isomorphic to $M_m(R/I_1){\times}M_m(R/I_2){\times}...{\times}M_m(R/I_n);$ and $G_m(R/I_1){\cap}I_2{\cap}...{\cap}I_n))$ is isomorphic to $G_m(R/I_1){\times}G_m(R/I_2){\times}...{\times}G_m(R/I_n);$ (2) In particular, if R is a finite ring with identity, then the order of $G_m(R)$ can be computed.

Keywords

coprime ideals;general linear group of degree m over a ring;congruence relation ${\equiv}_m(R)$;order of group

References

  1. T. W. Hungerford, Algebra, Springer-Verlag, New York-Belin, 1980
  2. B. R. McDonald, Finite Rings with Identity, Marcel Dekker, Inc, New York, 1974

Cited by

  1. On the Zero Divisor Graphs of the Ring of Lipschitz Integers Modulo n vol.27, pp.2, 2017, https://doi.org/10.1007/s00006-016-0709-3
  2. Free Cyclic Submodules in the Context of the Projective Line vol.70, pp.3-4, 2016, https://doi.org/10.1007/s00025-015-0492-9
  3. On the distribution of eigenspaces in classical groups over finite rings vol.443, 2014, https://doi.org/10.1016/j.laa.2013.09.016
  4. Fundamental domains for congruence subgroups of SL2 in positive characteristic vol.325, pp.1, 2011, https://doi.org/10.1016/j.jalgebra.2010.08.028