DOI QR코드

DOI QR Code

프랙탈과 다중프랙탈의 연구

Baek, In-Su
백인수

  • Published : 2006.07.01

Abstract

자연현상의 복잡한 대상의 연구에서 출발한 프랙탈의 연구는 물리학에서 특히 열역학에서의 기법을 활용한 다중프랙탈의 연구로까지 그 영역이 확대되었다. 이 논문에서는 프랙탈과 다중프랙탈의 여러 가지 성질과 그 응용에 대한 최근 결과를 소개한다

Keywords

하우스도르프 차원;패킹 차원;다중프랙탈;스펙트럼;칸토르 집합;르장드르 변환;자기상사집합;자기상사측도;국소차원;자기상사차원

References

  1. I. S. Baek, L. Olsen, and N. Snigireva, Divergence points of self-similar measures and packing dimension, preprint
  2. R. Cawley and R. D. Mauldin, Multifractal decomposition of Moran fractals, Adv. Math. 92 (1992), 196-236 https://doi.org/10.1016/0001-8708(92)90064-R
  3. G. A. Edgar, Measure, Topology and Fractal Geometry, Springer Verlag, 1990
  4. K. J. Falconer, The geometry of fractal sets, Cambridge University Press, 1985
  5. K. J. Falconer, Fractal Geometry, John Wiley and Sons, 1990
  6. K. J. Falconer, Techniques in fractal geometry, John Wiley and Sons, 1997
  7. F. Hausdorff, Dimension und ausress, Mass. Math. Ann. 79 (1919), 157-179
  8. G. Julia, Sur l'iteratioti des fonctions rationnelles, J. Math. Pure Appl. 7 (1918), no. 4, 47-245
  9. B. B. Mandelbrot, The fractal geometry of Nature, W. H. Freeman and Company, 1982
  10. P. M. Mattila, The geometry of sets and measures in Euclidean spaces, Cambridge University Press, 1995
  11. D. Rand, The singularity spectrum f(a) for cookie-cutters, Ergodic Th. Dynam. Sys. 9 (1989), 527-541
  12. L. Olsen and S. Winter, Normal and non-normal points of self-similar sets and divergence points of self-similar measures, J. London Math. Soc. 67 (2003), no. 2, 103-122 https://doi.org/10.1112/S0024610702003630
  13. C. A. Rogers, Dimension prints, Mathematika 35 (1988), 1-27 https://doi.org/10.1112/S0025579300006239
  14. X. Sun, H. Chen, Z. Wu, and Y. Yuan, Multifractal analysis of Hang Seng index in Hong Kong stock market, Physica A, Statistical mechanics and its applications 291 (2001), no. 1, 553-562 https://doi.org/10.1016/S0378-4371(00)00606-3
  15. C. Tricot, Two definitions of fractional dimension, Math. Proc. Cambridge Philo. Soc. 91 (1982), 54-74
  16. I. S. Baek, Relation between spectral classes of a self-similar Cantor set, J. Math. Anal. Appl. 292 (2004), no. 1, 294-302 https://doi.org/10.1016/j.jmaa.2003.12.001
  17. S. Ngai and Y. Wang, Hausdorff dimension of self-similar sets with overlaps, J. London Math. Soc. 63 (2001), no. 2, 655-672 https://doi.org/10.1017/S0024610701001946
  18. B. B. Mandelbrot, Les Object Fractals: Forme, Hasard et Dimension, Flammarion, 1975