DOI QR코드

DOI QR Code

Low Temperature Processing of Porous Silicon Carbide Ceramics by Carbothermal Reduction

탄소열환원 공정을 사용한 다공질 탄화규소 세라믹스의 저온 제조공정

  • Eom, Jung-Hye (Department of Materials Science and Engineering, the University of Seoul) ;
  • Jang, Doo-Hee (Department of Materials Science and Engineering, the University of Seoul) ;
  • Kim, Young-Wook (Department of Materials Science and Engineering, the University of Seoul) ;
  • Song, In-Hyuck (Ceramic Materials Group, Korea Institute of Machinery and Materials) ;
  • Kim, Hai-Doo (Ceramic Materials Group, Korea Institute of Machinery and Materials)
  • 엄정혜 (서울시립대학교 신소재공학과) ;
  • 장두희 (서울시립대학교 신소재공학과) ;
  • 김영욱 (서울시립대학교 신소재공학과) ;
  • 송인혁 (한국기계연구원 세라믹재료그룹) ;
  • 김해두 (한국기계연구원 세라믹재료그룹)
  • Published : 2006.09.01

Abstract

A low temperature processing route for fabricating porous SiC ceramics by carbothermal reduction has been demonstrated. Effects of expandable microsphere content, sintering temperature, filler content, and carbon source on microstructure, porosity, compressive strength, cell size, and cell density were investigated in the processing of porous silicon carbide ceramics using expandable microspheres as a pore former. A higher microsphere content led to a higher porosity and a higher cell density. A higher sintering temperature resulted in a decreased porosity because of an enhanced densification. The addition of inert filler increased the porosity, but decreased the cell density. The compressive strength of the porous ceramics decreased with increasing the porosity. Typical compressive strength of porous SiC ceramics with ${\sim}70%$ porosity was ${\sim}13 MPa$.

References

  1. X. Bao, M. R. Nangrejo, and M. J. Edirisinghe, 'Synthesis of Silicon Carbide Foams from Polymeric Precursors and their Blends,' J. Mater. Sci., 34 2495-505 (1999) https://doi.org/10.1023/A:1004666326039
  2. S. H. Kim, Y.-W. Kim, J. Y. Yun, and H. D. Kim, 'Fabrication of Porous SiC Ceramics by Partial Sintering and their Properties(in Korean),' J. Kor. Ceram. Soc., 41 [7] 541-47 (2004) https://doi.org/10.4191/KCERS.2004.41.7.541
  3. A. Herzog, R. Klingner, U. Vogt, and T. Graule, 'Wood- Derived Porous SiC Ceramics by Sol Infiltration and Carbothermal Reduction,' J. Am. Ceram. Soc., 87 [5] 784-93 (2004) https://doi.org/10.1111/j.1551-2916.2004.00784.x
  4. Y.-W. Kim, S. H. Kim, I. H. Song, H. D. Kim, and C. B. Park, 'Fabrication of Open-Cell, Microcellular Silicon Carbide Ceramics by Carbothermal Reduction,' J. Am. Ceram. Soc., 88 [10] 2949-51 (2005) https://doi.org/10.1111/j.1551-2916.2005.00509.x
  5. Y. S. Chun and Y.-W. Kim, 'Processing of Silica-Bonded Silicon Carbide Ceramics,' J. Kor. Ceram. Soc., 43 [6] 327- 32 (2006) https://doi.org/10.4191/KCERS.2006.43.6.327
  6. Y.-W. Kim, S. H. Kim, C. Wang, and C. B. Park, 'Fabrication of Microcellular Ceramics Using Gaseous Carbon Dioxide,' J. Am. Ceram. Soc., 86 [12] 2231-33 (2003) https://doi.org/10.1111/j.1151-2916.2003.tb03641.x
  7. M. Komac, 'The Investigation of High-Temperature Strength of SiC Based Refractories,' Ceram. Int., 7 [3] 103-05 (1981) https://doi.org/10.1016/0272-8842(81)90006-7
  8. S. S. Hwang, S. W. Park, J. H. Han, K. S. Han, and C. M. Kim, 'Mechanical Properties of Porous Reaction Bonded Silicon Carbide(in Korean),' J. Kor. Ceram. Soc., 39 [10] 948-54 (2002) https://doi.org/10.4191/KCERS.2002.39.10.948
  9. N. Keller, C. Pham-Huu, S. Roy, M. J. Ledoux, C. Estournes, and J. Guille, 'Influence of the Preparation Conditions on the Synthesis of High Surface Area SiC for Use as a Heterogeneous Catalyst Support,' J. Mater. Sci., 34 3189-202 (1999) https://doi.org/10.1023/A:1004681806843
  10. W. Wu, T. Fujiu, and G. L. Messing, 'Synthesis of Cellular Inorganic Materials by Foaming Sol-Gels,' J. Non-Cryst. Solids, 121 407-12 (1990) https://doi.org/10.1016/0022-3093(90)90167-K
  11. F. F. Lange and K. T. Miller, 'Open Cell, Low-Density Ceramics Fabricated from Reticulated Polymer Substrates,' Adv. Ceram. Mater., 2 [4] 827-31 (1987) https://doi.org/10.1111/j.1551-2916.1987.tb00156.x
  12. Y.-W. Kim, S. H. Kim, H. D. Kim, and C. B. Park, 'Processing of Closed-Cell Silicon Oxycarbide Foams from a Preceramics Polymer,' J. Mater. Sci., 39 5647-52 (2004) https://doi.org/10.1023/B:JMSC.0000040071.55240.85
  13. S. H. Kim, Y.-W. Kim, and C. B. Park, 'Effect of Inert Filler Addition on Pore Size and Porosity of Closed-Cell Silicon Oxycarbide Foams,' J. Mater. Sci., 39 3513-15 (2004) https://doi.org/10.1023/B:JMSC.0000026964.88284.ab
  14. D. H. Jang, Y.-W. Kim, I. H. Song, H. D. Kim, and C. B. Park, 'Processing of Highly Porous, Open-Cell, Microcellular Silicon Carbide Ceramics by Expansion Method Using Expandable Microspheres,' J. Ceram. Soc. Jpn., 114 [6] 549-53 (2006) https://doi.org/10.2109/jcersj.114.549
  15. Y.-W. Kim, Y. J. Jin, Y. S. Chun, I. H. Song, and H. D. Kim, 'A Simple Pressing Route to Closed-Cell Microcellular Ceramics,' Scripta Mater., 53 921-25 (2005) https://doi.org/10.1016/j.scriptamat.2005.06.032
  16. G. T. Burns, R. B. Taylor, Y. Xu, A. Zangvil, and G. A. Zank, 'High-Temperature Chemistry of the Conversion of Siloxanes to Silicon Carbide,' Chem. Mater., 4 1313-23 (1992) https://doi.org/10.1021/cm00024a035
  17. Y.-W. Kim and C. B. Park, 'Processing of Microcellular Preceramics Using Carbon Dioxide,' Comp. Sci. & Tech., 63 [14] 2371-77 (2003) https://doi.org/10.1016/S0266-3538(03)00270-7
  18. Y.-W. Kim, H. D. Kim, and C. B. Park, 'Processing of Microcellular Mullite,' J. Am. Ceram. Soc., 88 [12] 3311-15 (2005) https://doi.org/10.1111/j.1551-2916.2005.00597.x
  19. Y.-W. Kim, S. H. Kim, C. B. Park, and H. D. Kim, 'Processing and Mechanical Properties of Microcellular Ceramics,' Key Eng. Mater., 317-318 899-904 (2006) https://doi.org/10.4028/www.scientific.net/KEM.317-318.317

Cited by

  1. Flexural Strength of Macroporous Silicon Carbide Ceramics vol.48, pp.5, 2011, https://doi.org/10.4191/kcers.2011.48.5.360
  2. Effect of SiC Filler Content on Microstructure and Flexural Strength of Highly Porous SiC Ceramics Fabricated from Carbon-Filled Polysiloxane vol.49, pp.6, 2012, https://doi.org/10.4191/kcers.2012.49.6.625