Decomposition Behavior of Ferro-Si3N4 for High Temperature Refractory Application

고온 내화물 응용을 위한 질화규소철 (Ferro-Si3N4)의 분해거동

  • Choi, Do-Mun (Department of Ceramic Engineering, Hanyang University) ;
  • Lee, Jin-Seok (Department of Ceramic Engineering, Hanyang University) ;
  • Choi, Sung-Churl (Department of Ceramic Engineering, Hanyang University)
  • 최도문 (한양대학교 세라믹공학과) ;
  • 이진석 (한양대학교 세라믹공학과) ;
  • 최성철 (한양대학교 세라믹공학과)
  • Published : 2006.09.01


Decomposition behavior of $ferro-Si_3N_4$was investigated with varying temperature and holding time in mud components for high temperature refractory applications. Porosities gradually increased with increasing temperature and holding time due to the carbothermal reduction of $Si_3N_4\;and\;SiO_2$. Silicon monoxide (SiO) as a intermediate resulted from evaporation of $Si_3N_4\;and\;SiO_2$ reacted with C sources to generate needle-like ${\beta}-SiC$ and Fe in $Si_3N_4$ acted as a catalyst in order to enhance growth of SiC grain with the preferred orientation. SiC generation yield increased with increasing holding time, all of the $Si_3N_4\;and\;SiO_2$ affected on SiC formation up to 2h. However, SiC generation was only dependent on residual $SiO_2$ over 2h, because the carbothermal reduction reaction of $Si_3N_4$ was no longer possible at that time.


  1. L. S. Sigl, ' Core/Rim Structure of Liquid-Phase-Sintered Silicon Carbide,' J. Am. Ceram. Soc., 76 [3] 773-76 (1993)
  2. Y. S. Chun and Y. W. Kim, ' Processing of Silica-Bonded Silicon Carbide Ceramics,' J. Kor. Ceram. Soc., 43 [6] 327- 32 (2006)
  3. K. Kometani, K. Iizuka, and T. Kaga, ' Behavior of Ferro- $Si_3N_4$ in Taphole Mud of Blast Furnace(in Jpn.),' Taikabutsu, 50 [6] 326-30 (1998)
  4. H. Ohno, T. Kaga, M. Takata, and T. Moriguchi, 'The Reaction of Ferro-Silicon Nitride in Carbon Refractory(in Jpn.),' Taikabutsu, 54 [11] 574-75 (2002)
  5. R. W. Rice, 'Comparison of Stress Concentration Versus Minimum Solid Area Based on Mechanical Property-Porosity Relations,' J. Mater. Sci., 28 2187-90 (1993)
  6. R. W. Rice, 'Evaluation and Extension of Physical Property- Porosity Models Based on Minimum Solid Area,' J. Mater. Sci., 31 102-18 (1996)
  7. P. C. Silva and J. L. Figueiredo, 'Production of SiC and Si3N4 Whiskers in $C+SiO_2$ Solid Mixtures,' Mater. Chem. Phys., 72 326-31 (2001)
  8. W. S. Seo and K. Koumoto, 'Stacking Faults in $\beta-SiC$ Formed during Carbothermal Reduction of $SiO_2$,' J. Am. Ceram. Soc., 79 [7] 1777-82 (1996)
  9. E. Heikinheimo, I. Isomäki, A. A. Kodentsov, and F. J. J. van Loo, 'Chemical Interation between Fe and Silicon Nitride Ceramic,' J. Eur. Ceram. Soc., 17 25-31 (1997)
  10. H. J. Choi and J. G. Lee, 'Gontinuous Synthesis of Silicon Carbide Whiskers,' J. Mater. Sci., 30 1982-86 (1995)
  11. J. V. Milewski, F. D. Gac, J. J. Petrovic, and S. R. Skaggs, 'Growth of Beta-Silicon Carbide Whiskers by the VLS Process,' J. Mater. Sci., 20 1160-66 (1985)
  12. H. J. Choi and J. G. Lee, 'Synthesis of Silicon Carbide Whiskers (I) : Reaction Mechanism and Rate-Controlling Reaction(in Korean),' J. Kor. Ceram. Soc., 35 [12] 1329-36 (1998)
  13. R. D. Jong, R. A. Mccauley, and P. Tambuyser, 'Growth of Twinned $\beta$-Silicon Carbide Whiskers by the Vapor-Liquid- Solid Process,' J. Am. Ceram. Soc., 70 [11] C-338-41 (1987)
  14. H. Wang, Y. Berta, and G. S. Fischman, 'Microstructure of Silicon Carbide Whiskers Synthesized by Carbothermal Reduction of Silicon Nitride,' J. Am. Ceram. Soc., 75 [5] 1080-84 (1992)
  15. H. P. Martin, R. Ecke, and E. Müller, 'Synthesis of Nanocrystalline Silicon Carbide Powder by Carbothermal Reduction,' J. Eur. Ceram. Soc., 18 1737-42 (1998)