DOI QR코드

DOI QR Code

Densification Behavior of Nanocrystalline Ceramic Powder under Cold Compaction

냉간 압축 하에서 나노 세라믹 분말의 치밀화 거동

  • 이성철 (포항공과대학교 기계공학과) ;
  • 김기태 (포항공과대학교 기계공학과)
  • Published : 2006.10.01

Abstract

Densification behavior of nanocrystalline titania powder was investigated under cold compaction. Experimental data were obtained under triaxial compression with various loading conditions. Lee and Kim proposed the Cap model by developing the parameters involved in the yield function of general Cap model and volumetric strain evolution under cold isostatic pressing. The parameters in the Drucker/Prager Cap model and the proposed model were obtained from experimental data under triaxial compression. Finite element results from the models were compared with experimental data for densification behavior of nanocystalline ceramic powder under cold isostatic pressing and die compaction. The proposed model agreed well with experimental data under cold compaction, but the Drucker/Prager Cap model underestimated at the low density range. Finite element results, also, show the relative density distribution of nanocystalline ceramic powder compacts is severe compared to conventional micron powder compacts with the same averaged relative density.

Keywords

Cap Model;Cold Compaction;Constitutive Model;Densification;Finite Element Analysis;Nano Powder;Triaxial Compression

References

  1. Mayo, M. J., 1996, 'Processing of Nanocrystalline Ceramics from Ultrafine Particles,' International Materials Reviews, Vol. 41, No.3, pp. 85-115 https://doi.org/10.1179/imr.1996.41.3.85
  2. Rittner, M. N. and Abraham, T., 1997, 'The Nanostructured Materials Industry,' American Ceramic Society Bulletin, Vol. 76, No.6, pp. 51-53
  3. Suryanarayana, C., 1995, 'Nanocrystalline Materials,' International Materials Reviews, Vol. 40, No.2, pp. 41-64 https://doi.org/10.1179/imr.1995.40.2.41
  4. Verweij, H., 1998, 'Nanocrystalline and Nanoporous Ceramics,' Advanced Materials, Vol. 10, No. 17, pp. 1483-1486 https://doi.org/10.1002/(SICI)1521-4095(199812)10:17<1483::AID-ADMA1483>3.0.CO;2-J
  5. Gell, M., 1995, 'Application Opportunities for Nanostructured Materials and Coating,' Materials Science and Engineering A, Vol. A204, pp. 246-251 https://doi.org/10.1016/0921-5093(95)09969-7
  6. Schwartz, E. G and Weinstein, A. S., 1964, 'Model for Compaction of Ceramic Powders,' Journal of the American Ceramic Society, Vol. 48, No.7, pp. 346-350 https://doi.org/10.1111/j.1151-2916.1965.tb14758.x
  7. Strijbos, S., Broese, A. V. G. and Vermeer, P. A., 1979, 'Recent Progress in Understanding Die Compaction of Powders,' Journal of the American Ceramic Society, Vol. 62, pp. 57-59 https://doi.org/10.1111/j.1151-2916.1979.tb18805.x
  8. Shima. S. and Mimura, K., 1986, 'Densification Behavior of Ceramic Powder,' International Journal of Mechanical Sciences, Vol. 28, No.1., pp. 53-59 https://doi.org/10.1016/0020-7403(86)90007-X
  9. Secondi, J., 2002, 'Modeling Powder Compaction from a Pressure-Density Law to Continuum Mechanics,' Powder Metallurgy, Vol. 45, No.3, pp. 213-217 https://doi.org/10.1179/003258902225006943
  10. Kim, K. T., Choi, S. W. and Park, H., 2000, 'Densification Behavior of Ceramic Powder under Cold Compaction,' Journal of Engineering Materials and Technology, Vol. 122, pp. 238-244 https://doi.org/10.1115/1.482793
  11. Kim, H. S., 2003, 'Densification modeling for nanocrystalline metallic powders,' Journal of Materials Processing Technology, Vol. 140, pp. 401-406 https://doi.org/10.1016/S0924-0136(03)00776-3
  12. Park, H. and Kim K. T., 2001, 'Consolidation Behavior of SiC Powder under Cold Compaction,' Materials Science and Engineering A, Vol. A299, pp. 116-124 https://doi.org/10.1016/S0921-5093(00)01419-2
  13. Reiterer, M., Kraft, T., Janosovits, U. and Riedel, H., 2004, 'Finite Element Simulation of Cold Isostatic Pressing and Sintering of SiC Components,' Ceramics International, Vol. 30, pp. 177-183 https://doi.org/10.1016/S0272-8842(03)00086-5
  14. Lee, S. C. and Kim, K. T., 2006, 'A Study of the Cap Model for Metal and Ceramic Powder under Cold Compaction,' Materials Science and Engineering A, submitted for publication https://doi.org/10.1016/j.msea.2006.09.013
  15. Lee, S. C. and Kim, K. T., 2001, 'Densification Behavior of Aluminum Alloy Powder under Cold Compaction,' International Journal of Mechanical Sciences, Vol. 44, pp. 1295-1308 https://doi.org/10.1016/S0020-7403(02)00003-6
  16. Bortzmeyer, D., 1990, Compaction des Poudres Ceramiques, Doctoral Thesis, Ecole Nationale Superieure des Mines de Paris
  17. Chtourou, H., Guillot, M., Gakwaya, A. and Guillot, M., 2002, 'Modeling of the Metal Powder Compaction Process Using the Cap Model. Part I: Experimental Material Characterization and Validation,' International Journal of Solids and Structures, Vol. 39, pp. 1059-1075 https://doi.org/10.1016/S0020-7683(01)00255-4
  18. Tszeng, T. C. and Wu, W. T., 1996, 'A Study of The Coefficients in Yield Functions Modeling Metal Powder Deformation,' Acta Materialia, Vol. 44, No.9, pp. 3543-3552 https://doi.org/10.1016/1359-6454(96)00006-7
  19. ABAQUS User's I and II Manual, Hibbitt, Karlsson, and Sorensen, 1998
  20. Wang, J. C., 1984, 'Young's Modulus of Porous Materials,' Journal of Materials Science, Vol. 19, pp. 801-814 https://doi.org/10.1007/BF00540451
  21. Song. H. J. and Chandler, H. W., 1990, 'The Determination of Some Properties of Ceramic Powders Using a Simple Cylindrical Apparatus,' British Ceramic Transactions, Vol. 89, pp. 49-52