DOI QR코드

DOI QR Code

PDMS/Glass Serpentine Microchannel Chip for PCR with Bubble Suppression in Sample Injection

시료주입시 기포발생이 억제된 반응조 형태의 중합효소연쇄반응용 PDMS/유리 바이오칩

  • 조철호 (삼성전자 통신연구소 통신모듈 Lab.) ;
  • 조웅 (한양대학교 대학원 기계공학과) ;
  • 황승용 (한양대학교 기계공학과) ;
  • 안유민 (한양대학교 분자생명과학부)
  • Published : 2006.10.01

Abstract

This paper reports low-cost microreactor $(10{\mu}{\ell})$ biochip for the DNA PCR (polymerase chain reaction). The microbiochip $(20mm{\times}28mm)$ is a hybrid type which is composed of PDMS (polydimethylsiloxane) layer with serpentine micochannel $(360{\mu}m{\times}100{\mu}m)$ chamber and glass substrate integrated with microheater and thermal microsensor. Undesirable bubble is usually created during sample loading to PMDS-based microchip because of hydrophobic chip surface. Created bubbles interrupt stable biochemical reaction. We designed improved microreactor chamber using microfluidic simulation. The designed reactor has a coner-rounded serpentine channel architecture, which enables stable injection into hydrophobic surface using micropipette only. Reactor temperature needed to PCR reaction is controlled within ${\pm}0.5^{\circ}C$ by PID controller of LabVIEW software. It is experimentally confirmed that SRY gene PCR by the fabricated microreactor chip is performed for less than 54 min.

Keywords

Polymerase Chain Reaction;Serpentine Microchannel Reactor;PDMS/Glass DNA Chip

References

  1. Northrup, M. A., Gonzlaez, C., Hadley, D., Hills, R. F., Landre, P., Lehew, S., Saiki, R., Sninsky, J. J., Watson, R. and Watson, R. Jr., 1995, 'A MEMS-based Miniature DNA Analysis System,' The 8th International Conference on Solid-State Sensors and Actuators and Eurosensors IX, Stockholm, Sweden, pp. 764-767 https://doi.org/10.1109/SENSOR.1995.717344
  2. Daniel, J. H., Iqbal, S., Millington, R. B., Moore, D. F., Lowe, C R., Lesile, D. L., Lee, M. A. and Pearce, M. J., 1998, 'Silicon Microchambers for DNA Amplification,' Sensors and Actuators (A), Vol. 71, pp. 81-88 https://doi.org/10.1016/S0924-4247(98)00158-7
  3. Kricka, L. J. and Wilding, P., 2003, 'Microchip PCR,' Anal Bioanal Chem, Vol. 377, pp. 820-825 https://doi.org/10.1007/s00216-003-2144-2
  4. Kopp, M. U., de Mello, A. J. and Manz, A., 1998, 'Chemical Amplification: Continuous-Flow PCR in a Chip,' Science, Vol. 280, pp. 1046-1048 https://doi.org/10.1126/science.280.5366.1046
  5. Sun, K., Yamaguchi, A., Ishida, Y., Matsuo, S. and Misawa, H., 2002, 'A Heater-Integrated Transparent Microchannel Chip for Continuous-Flow PCR,' Sensors and Actuators (B), Vol. 84, pp. 283-289 https://doi.org/10.1016/S0925-4005(02)00016-3
  6. Fujii, T., 2002, 'PDMS-Based Microfluidic Devices for Biomedical Applications,' Microelectronic Engineering, Vol. 61-62, pp. 907-914 https://doi.org/10.1016/S0167-9317(02)00494-X
  7. Koh, C. G, Tan, w., Zhao, M.-Q., Ricco, A. J. and Fan, Z. H., 2003, 'Integrating Polymerase Chain Reaction, Valving, and Electrophoresis in a Plastic Device for Bacterial Detection,' Analytical Chemistry, Vol. 75, pp. 4591-4598 https://doi.org/10.1021/ac0343836
  8. Hong, J. W., Fujii, T., Seki, M., Yamamoto, T. and Endo, I., 2001,'Integration of Gene Amplification and Capillary Gel Electrophoresis on a Polydimethylsiloxane-Glass Hybrid Microchip,' Electrophoresis, Vol. 22, pp. 328-333 https://doi.org/10.1002/1522-2683(200101)22:2<328::AID-ELPS328>3.0.CO;2-C
  9. Madou, M. J., 2002, Fundamentals of Micro Fabrication, 2nd ed., CRC Press, Boca Raton, pp. 510-512
  10. Choi, J.-Y., Ahn, Y. and Hwang, S.-Y., 2006, 'PDMS/Glass Based DNA Microbiochip for Restriction Enzyme Reaction and Electrophoresis Detection,' Trans. of the KSME (A), Vol. 30, No.1, pp. 26-31 https://doi.org/10.3795/KSME-A.2006.30.1.026
  11. Lee, S.-W., Ahn, Y. and Chai, Y.-G, 2004, 'Microfilter Chip Fabrication for Bead-Based Immunoassay,' Trans. of the KSME (A), Vol. 28, No.9, pp. 1429-1434 https://doi.org/10.3795/KSME-A.2004.28.9.1429
  12. EI-Ali, J., Perch-Nielsen, I. R., Poulsen, C. R., Bang, D. D., P. and Wolff, T. A., 2004, 'Simulation and Experimental Validation of a SU-8 Based PCR Thermocycler Chip with Integrated Heaters and Temperature Sensor,' Sensors and Actuators (A), Vol. 110, pp. 3-10 https://doi.org/10.1016/j.sna.2003.09.022
  13. Yoon, D. S., Lee, Y.-S., Lee, Y., Cho, H. J., Sung, S. W., Oh, K. W., Cha, J. and Lim, G, 2002, 'Precise Temperature Control and Rapid Thermal Cycling in a Micromachined DNA Polymerase Chain Reaction Chip,' Journal of Micromechanics and microVol. 12, pp. 813-823 https://doi.org/10.1088/0960-1317/12/6/312
  14. Shin, Y. S., Cho, K., Lim, S. H., Chung, S., Park, S.J., Chung, C, Han, D.-C and Chang, J. K., 2003, 'PDMS-Based Micro PCR Chip with Parylene Coating,' Journal of Micromechanics and microVol. 13, pp. 768-774 https://doi.org/10.1088/0960-1317/13/5/332
  15. Cheng, J., Shoffner, M. A., Hvichia, G E., Kricka, L. J. and Wilding, P., 1996, 'Chip PCR. II. Investigation of Difference PCR Amplification Systems in Microfabricated Silicon-Glass Chips,' Nucleic Acids Research, Vol. 24, pp. 380-385 https://doi.org/10.1093/nar/24.2.380
  16. Cho, W., Ko, Y.-J., Ahn, Y., Yoon, J.-Y. and Cho, N.G, 2006, 'Surface Modification Effect of Wettability on the Performance of PDMS-Based Valve-less Micrompump,' Key Engineering Materials, Vols. 326-328, pp. 297-300 https://doi.org/10.4028/www.scientific.net/KEM.326-328.297
  17. Zhao, Y. and Zhang, X., 2005, 'A Novel Pressure Indicator for Continuous Flow PCR Chip Using Micro Molded PDMS Pillar Arrays,' Mater. Res. Symp. Proc. Vol. 845, pp. AA5.10.1-AA5.10.6
  18. Hsu, J. T., Das, S. and Mohapatra, S., 1997, 'Polymerase Chain Reaction Engineering,' Biotechand Bioengineering, Vol. 55, No.2, pp. 359-366 https://doi.org/10.1002/(SICI)1097-0290(19970720)55:2<359::AID-BIT13>3.0.CO;2-C