DOI QR코드

DOI QR Code

Electromagnetic Design Methodology for MR Fluid Actuator

MR 유체 작동기의 전자기적 설계 방법

  • 남윤주 (부산대학교 대학원 지능기계공학과) ;
  • 문영진 (부산대학교 기계기술연구소) ;
  • 이육형 (부산대학교 기계기술연구소) ;
  • 박명관 (부산대학교 기계공학부 및 기계기술연구소)
  • Published : 2006.10.01

Abstract

This paper presents an electromagnetic design methodology for the magneto-rheological (MR) fluid actuator. In order to improve the performance of the MR fluid actuator, the magnetic circuit including the MR fluid, the ferromagnetic material for flux path and the electromagnetic coil should be well designed, thereby the magnetic field intensity can be effectively supplied to the MR fluid. First of all, in order to improve the static characteristic, the length of the flux path is decreased by removing the unnecessary bulk of the yoke. Next, in order to improve the dynamic and hysteretic characteristics, the magnetic reluctance of the ferromagnetic material is increased by minimizing the cross section through which the flux passes. The effectiveness of the proposed design methodology is verified by the magnetic analysis and a series of basic experiments.

Keywords

Magneto-Rheological Fluid;MR Fluid Actuator

References

  1. Jolly, M. R., Bender, J. W., and Carlson, J. D., 1999, 'Properties and Applications of Commercial Magnetorheological Fluids,' J. of Intell. Mater. Syst. Struct., Vol. 10, pp. 5-13 https://doi.org/10.1106/R9AJ-XYT5-FG0J-23G1
  2. Phule, P., 2001, 'Magnetorheological (MR) Fluid: Principles and Applications,' Smart Materials Bulletin, No.2, pp. 7-10 https://doi.org/10.1016/S1471-3918(01)80040-X
  3. Mikulowski, G. and Holnicki-Szulc, J., 2003, 'Adaptive Aircraft Shock Absorbers,' AMAS Workshop on Smart Materials and Structures, SMART'03, pp. 71-80
  4. Norris, J. A. and Ahmadian, M., 2003, 'Behavior of Magneto-Rheological Fluids Subject to Impact and Shock Loading,' ASME Int. Mech. Eng. Congress & Exposition, IMECE'03, pp. 1- 6
  5. Han, Y. M., Nam, M. H., Han, S. S., Lee, H. 0., and Choi, S. B., 2002, 'Vibration Control Evaluation of a Commercial Vehicle Featuring MR Seat Damper,' J. Intelligent Material Systems and Structures, Vol. 13, pp. 575-579 https://doi.org/10.1106/104538902031060
  6. Stelzer, G. J., Schulz, M. J., Kim, J., and Allemagn, J., 2003, 'A Magnetorheological Semi-Active Isolator to Reduce and Vibration Transmissibility in Automobiles,' J. Intell. Mater. Syst. Struct., Vol. 14, pp. 743-765 https://doi.org/10.1177/104538903038840
  7. Li, W. H. and Du, H., 2003, 'Design and Experimental Evaluation of a Magnetorheological Brake,' Int. J. Adv. Manuf Technol, Vol. 21, pp. 508-515 https://doi.org/10.1007/s001700300060
  8. An, J. and Kwon, D. S., 2003, 'Modeling of a Magnetorheological Actuator Including Magnetic Hysteresis,' J. Intell. Mater. Syst. Struct., Vol. 14, pp. 541-550 https://doi.org/10.1177/104538903036506
  9. Choi, S. B., Hong, S. R., and Cheong, C. C., 1999, 'Comparison of Field-Controlled Characteristics Between ER and MR Clutches,' J. Intell. Mater. Syst. Struct., Vol. 10, pp. 615-619 https://doi.org/10.1106/217G-CEUN-Q710-AB60
  10. Lampe, D., Thess, A., and Dotzauer, C., 1998, 'MRF Clutch: Design Considerations and Performance,' Proc. 6th Int. Conf. New Actuators, pp. 449-452
  11. Lee, U., Kim, D., Hur, N., and Jeon, D., 1999, 'Design Analysis and Experimental Evaluation of An MR fluid Clutch,' J. of Intell. Mater. Syst. Struct., Vol. 10, pp. 701-707 https://doi.org/10.1106/EX6X-Y4QQ-XQ5L-8JJV
  12. Bolter, R. and Janocha, H., 1997, 'Design Rules for MR fluid Actuators in Different Working Modes,' Proc. SPIE Symp. Smart Structures and Materials, pp. 148-159 https://doi.org/10.1117/12.274197
  13. Takesue, N., Asaoka, H. A., Lin, J., Sakaguchi, M., Zhang, G., and Furusho, J., 2000, 'Development and Experiments of Actuator Using MR Fluid,' Proc. 2000 IEEE Int. Conf. Industrial Electronics, Control and Instrumentation, pp.1838-1843 https://doi.org/10.1109/IECON.2000.972555
  14. Takesue, N., Furusho, J., and Kiyota, Y., 2004, 'Fast Response MR-Fluid Actuator,' JSME Int., Part C, Vol. 47, pp. 783-791 https://doi.org/10.1299/jsmec.47.783
  15. Kavlicoglu, B. M., Gordaninejad, E, Evrensel, C. A. Cobanoglu, N., Liu, Y., and Fuchs, A., 2002, 'A HighTorque Magneto-Rheological Fluid Clutch,' Proc. SPIE Conf Smart Materials and Structures, pp. 1-8
  16. Iskander, M. F., 1992, Electromangetic Fields and Wasves, Prentice Hall
  17. Lord Corporation, 2003, 'MagnetoRheological Fluid MRF-132AD,' Product Bulletin
  18. Carlson J. D., Leroy D. E, Holzheimer J. C. et aI., 1998, 'Controllable Brake,' US Patent 5, 842, 547