A Novel Fabrication Method of the High-Aspect-Ratio Nano Structure (HAR-Nano Structure) Using a Nano X-Ray Shadow Mask

나노 X-선 쉐도우 마스크를 이용한 고폭비의 나노 구조물 제작

  • 김종현 (포항 가속기 연구소) ;
  • 이승섭 (한국과학기술원 기계공학과) ;
  • 김용철 (한국과학기술원 기계공학과)
  • Published : 2006.10.01


This paper describes the novel fabrication method of the high-aspect-ratio nano structure which is impossible by conventional method using a shadow mask and a Deep X-ray Lithography (DXRL). The shadow mask with $1{\mu}m-sized$ apertures is fabricated on the silicon membrane using a conventional UV-lithography. The size of aperture is reduced to 200nm by accumulated low stress silicon nitride using a LPCVD (low pressure chemical vapor deposition) process. The X-ray mask is fabricated by depositing absorber layer (Au, $3{\mu}m$) on the back side of nano shadow mask. The thickness of an absorber layer must deposit dozens micrometers to obtain contrast more than 100 for a conventional DXRL process. The thickness of $3{\mu}m-absorber$ layer can get sufficient contrast using a central beam stop method, blocking high energy X-rays. The nano circle and nano line, 200nm in diameter in width, respectively, were demonstrated 700nm in height with a negative photoresist of SU-8.


Nano Shadow Mask;High-Aspect-Ratio Nano Structure;Deep X-Ray Lithography;Nano X-Ray Shadow Mask;Central Beam Stop Method


  1. Madou M. J., 2002, 'Fundamentals of Micro- fabrication,' CRC Press, pp. 53-57
  2. Chou S. Y., Krauss P. R. and Renstrom P. J., 1996, 'Nanoimprint Lithography,' J. Vac. Sci. Technol., Vol. 14, pp. 4129-4133
  3. Ginger D. S., Zhang H. and Mirkin C. A., 2004, 'The Evolution of Dip-Pen Nanolithography,' Ang. Chem., Vol. 43, No.1, pp. 30-45
  4. Seo Y. H., Choi D. S., Lee J. H., Je T. J. and Whang K. H., 2004, 'Fabrication of High Aspect Ratio 100nm-scale Nickel Stamper Using E-beam Writing based on Chrome/Quartz Mask Without Anti-Reflection Layer for Injection Molding of Optical Grating,' Trans. of the KSME (A), Vol. 28, No. 11, pp. 1794-1798
  5. Brugger J., Berenschot J. W., Kuiper S., Nijdam W., Otter B. and Elwenspoek M., 2000, 'Resistless Patterning of Sub-Micron Structures by Evaporator Through Nanostencils,' Microelectron. Eng., Vol. 53, pp. 403-405
  6. Kim G. M., M. A. F. van den Boogaart, and Brugger J., 2003, 'Fabrication and Application of a Full Wafer Size Micro/Nanostencil for Multiple Length-Scale Patterning,' Microelectron. eng., Vol. 67-68, pp. 609-614
  7. Schumacher C. and Faschinger W., 2000, 'Self-Organized Nucleation of Sharply Defined Nanostructures During Growth into Shadow Mask,' J. cryst. growth, Vol. 214-215, pp. 732-736
  8. Blech V., Nobuyuki T. and Kim B. J., 2005, 'Nano Stencilling Through a $cm^2$-wide Silicon Membrane,' Proc. Korean MEMS Conf, pp. 451-454
  9. Perennes F. and Pantenburg F. J., 2001, 'Adhesion Improvement in the Deep X-Ray Lithography Process Using a Central Beam Stop,' Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms, Vol. 174, pp. 317-323
  10. Guckel H., 1998, 'High-Aspect-Ratio Micro-maching via Deep X-Ray Lithography,' Proc. IEEE98, Vol. 80, pp. 1586-1593
  11. Lee K. C. and Lee S. S., 2003, 'Deep X-Ray Mask with Integrated Actuator for 3D Microfabrication,' Sens. Actuator A, Vol. 108, pp. 121-127
  12. Bar E., and Lorenz J., 1996, '3-D Simulation of LPCVD Using Segment-Based Topography Discretization,' IEEE Trans. Semicond. Manuf, Vol. 9, No.1, pp. 67-73
  13. Lee S. J., Kim G. M., 2006, 'Fabrication of Nanostencil Using Additional Deposition' Proc. of the KSME 2006 Spring Annual Meeting, pp. 4082-4086