Biological Activities of Oenothera laciniata Extracts (Onagraceae, Myrtales)

애기달맞이꽃(Oenothera laciniata Hill) 추출물의 생리활성 탐색

  • Published : 2006.12.31


The biological activities of Oenothera laciniata extracts were measured, including antioxidant activity and cytotoxic effects. O. laciniata is an endemic species of Jeju Island, Korea with a seaside habitat. The concentration of total polyphenolic compounds from ethanol (EtOH), n-hexane, dichloromethane ($CH_2Cl_2$), ethylacetate (EtOAc), butanol (BuOH), and water fractions of O. laciniata was 63.96, 8.49, 28.11, 172.64, 114.56, and 34.91 mg/g, respectively. The EtOAc fraction contained the highest antioxidative activities ($IC_{50}$), measured as follows: 16.19 ${\mu}g/mL$ in DPPH radical scavenging capacity, 220.37 ${\mu}g/mL$ in xanthine oxidase inhibitory activity, 42.07${\mu}g/mL$ in superoxide radical scavenging capacity, and 421.33 ${\mu}g/mL$ in nitric oxide scavenging capacity. The cytotoxicity of O. laciniata extracts was examined through their effect on the growth of HL-60 cells. Incubation of HL-60 cells with the EtOAc fraction resulted in the greatest inhibition of cell growth; high DNA fragmentation and numerous sub-G1 hypodiploid cells were observed in HL-60 cell cultures treated with the EtOAc fraction. These results suggest that the EtOAc fraction of O. laciniata has potent apoptotic and antioxidative activities in vitro.


Oenothera laciniata;antioxidant;HL-60 cells;cytotoxicity;apoptosis


  1. Chung LY, Kong SK, Fung KP, Kwork TT. Induction of apoptosis by green tea catechins in human prostate cancer DU145 cells. Life Sci. 68: 1207-1214 (2001)
  2. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 267: 1456-1462 (1995)
  3. Muller I, Jenner A, Bruchelt G, Niethanmmer D, Halliwell B. Effect of concentration on the cytotoxic mechanism of doxorubicin- apoptosis and oxidative DNA damage. Biochem. Bioph. Res. Co. 230: 254-257 (1997)
  4. Varro ET, Lynn RB, James ER. Pharmacognosy 9th edition, Lea and Febriger Philadelphia, p. 471 (1988)
  5. Okuda T, Hatano T, Yazaki K. Guavin B, an ellagitannin of novel type. Chem. Pharm. Bull. 32: 3787-3788 (1984)
  6. Marcocci L, Maguire JJ, Droy-Lefaix MT, Packer L. The nitric oxide-scavenging properties of ginkgo biloba extract EGb 761. Biochem. Bioph. Res. Co. 201: 748-755 (1994)
  7. Jung YJ, Ahn BG, Choi YJ. Isolation and enzyme inhibition of tannins from Korean green tea. Korean Biochem. J. 26: 84-87 (1993)
  8. Whang HJ, Han WS, Yoon KR. Quantitative analysis of total phenolic content in apple. Anal. Sci. Technol. 14: 377-383 (2001)
  9. Planchon SM, Wuerzberger S, Frydman B, Huston P, Church DR, Wilding G, Boothman DA. ${\beta}$-Lapachone-mediated apoptosis in hwnan promyelocytic leukemia (HL-60) and human prostate cancer cells: a p53-independent response. Cancer Res. 55: 3706-3711 (1995)
  10. Kim HJ, Jun BS, Kim SK, Cha JY, Cho YS. Polyphenolic compound content and antioxidative activities by extracts from seed, sprout and flower of safflower (Carthamus tinctiorius L.). J. Korean Soc. Food Sci. Nutr. 29: 1127-1132 (2000)
  11. Lee SJ, Ko WG, Kim JH, Sung JH, Lee SJ, Moon CK, Lee BH. Induction of apoptosis by a novel intestinal metabolite of ginseng saponin via cytochrome c-mediated activation of caspase-3 protease. Biochem. Pharmacol. 60: 677-685 (2000)
  12. Liu M, Pelling JC, Ju J, Chu E, Brash DE. Antioxidant action via p53-mediated Apoptosis. Cancer Res. 58: 1723-1729 (1998)
  13. Kim DS, Ahn BW, Yeum DM, Lee DH, Kim SB, Park YH. Degradation of carcinogenic nitrosamine formation factor by natural food components. 1. Nitrite-scavenging effects of vegetable extracts. Bull. Korean Fish. Soc. 20: 463-468 (1987)
  14. Wyllie AH. Apoptosis and the regulation of cell numbers in normal and neoplastic tissues: an overview. Cancer Metast. Rev. 11: 95-103 (1992)
  15. Korycka-Dahl M, Richardson T. Initiation of oxidative changes in foods. J. Dairy Sci. 63: 1181-1198 (1980)
  16. Gutfinger T. Polyphenols in olive oils. J. Am. Oil Chem. Soc. 58: 966-968 (1981)
  17. Aruoma OI. Nutrition and health aspects of free radIcals and antloxidants. Food Chem. Toxicol. 32: 671- 683 (1994)
  18. Hockenhery DM, Oltavai ZN, Korsmeyer SJ. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75: 241-251 (1993)
  19. Bartsh H, Ohshima H, Pignatell B. Inhibition of endogenous nitrosation: Mechanism and implications in human cancer prevention. Mutat. Res. 202: 307-324 (1988)
  20. Hatano T, Yasuhara T, Fukuda T, Noro T, Okuda T. Phenolic constituents of licorice. II. Structures of licopyranocoumarin, licoarylcoumarin and glisoflavone, and inhibitory effects of licorice phenolics on xanthine oxidase. Chem. Pharm. Bull. 37: 3005-3009 (1989)
  21. Fesus L, Davies PJ, Piacentini M. Molecular mechanisms in the program of cell death by apoptosis. Eur. J. Cell BioI. 56: 170-177 (1991)
  22. Lee TB. Illustrated Flora of Korea. Hyangmoon Publishing Co., Seoul, Korea (1999)
  23. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 181: 1198-1200 (1958)
  24. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and (15N) nitrate in biological fluids. Anal. Biochem. 126: 131-136 (1982)
  25. Fesus L, Thomazy V, Autuori F, Ceru MP, Tarcsa E, Piacentini M. Apoptotic hepatocytes become insoluble in detergents and chaotropic agents as a result of transglutaminase action. FEBS Lett. 245: 150-154 (1989)
  26. Macrae R, Robinson RK, Sadler MJ. Encyclopedia of Food Science Food Technology and Nutrition. Academic Press. New York, NY, USA. pp. 3240-3249 (1993)
  27. Kim JY, Jung KS, Jeong HG. Suppressive effects of the kahweol and cafestol on cycloocygenase-2 expression in macrophages. FEBS Lett. 569: 321-326 (2004)
  28. Lee JH, Lee SR. Some physiological activity of phenolic substances in plant foods. Korean J. Food Sci. Technol. 26: 317-323 (1994)
  29. Cheng ZJ, Kuo SC, Chan SC, Ko FN, Teng CM. Antioxidant properties of butein isolated from Dalbergia odorifera. Biochem. Biophys. Acta. 1392: 291-299 (1998)
  30. Keum YS, Park KK, Lee JM, Chun KS, Shur YJ. Antioxidant and anti-tumor promoting activities of the methanol extract of heat-processed ginseng. Cancer Lett. 150: 41-48 (2000)
  31. Sen CK. Redox signaling and the emerging therapeutic potential of thiol antioxidants. Biochem. Pharmacol. 55: 1747-1758 (1998)
  32. Clement MV, Hirpara JL, Chawdhury S, Pervaiz S. Chemopreventive agent resveratrol, a natural product derived from grapes, triggers CD95 signaling-dependent apoptosis in human tumor cells. Blood 92: 996-1002 (1998)