DOI QR코드

DOI QR Code

COMPARISON BETWEEN THE POSITIVE SCHEMES AND WENO FOR HIGH MACH JETS IN 1D

Ha, Young-Soo

  • 발행 : 2007.10.31

초록

Comparison of high Mach number jets using positive schemes and Weighted ENO methods is considered in this paper. The positive scheme introduced by [11, 14] and Weighted ENO [9, 10] have allowed us to simulate very high Mach numbers more than Mach 80. Simulations at high Mach numbers and with radiative cooling are essential for achieving detailed agreement with astrophysical images.

키워드

positive schemes;WENO;conservative laws;euler equation

참고문헌

  1. J. P. Borice and D. L.Book, Flux corrected transport I, SHASTA, A fluid fransport flgorithm that works, J. Comput. Phys. 11 (1973), 38-69 https://doi.org/10.1016/0021-9991(73)90147-2
  2. J. Gressier, P. Villedieu, and J.M. Moschetta, Positivity of flux vector splitting schemes, J. Comput. Phys. 155 (1999), 199-220 https://doi.org/10.1006/jcph.1999.6337
  3. Y. Ha, C. L. Gardner, A. Gelb, and C-W. Shu, Numerical Simulation of High Mach Number Astrophysical Jets with Radiative Cooling J. Sci. Comput. 24 (2005), 29-44 https://doi.org/10.1007/s10915-004-4786-4
  4. Y. Ha and Y. J. Kim, Explicit solutions to a convection-reaction equation and defects of numerical schemes, J. Comput. Phys. 220 (2006), 511-531 https://doi.org/10.1016/j.jcp.2006.07.018
  5. A. Harten, P.D. Lax, and B. van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev. 25 (1983), no. 1, 35-61 https://doi.org/10.1137/1025002
  6. A. Harten, On a Class of High Resolution Total- Variation-Stable Finite-Difference Schemes, SIAM J. Numer. Anal. 21 (1984), no. 1, 1-23 https://doi.org/10.1137/0721001
  7. A. Harten and G. Zwas, Self-Adjusting Hybrid Schemes for Shock Computations, J. Comput. Phys. 9 (1972) 568-583 https://doi.org/10.1016/0021-9991(72)90012-5
  8. J. J. Hester, K. R. Stapelfeldt, and J. A. Scowen, Hubble space telescope wide field planetary camera 2 observations of HH 1-2, Astrophysical Journal 116 (1998), 372-395 https://doi.org/10.1086/300396
  9. G-S. Jiang and C-C. Wu, A High-Order WENO Finite Difference Scheme for the Equations of Ideal Magnetohydrodynamics, J. Comput. Phys, 150 (1999), 561-594 https://doi.org/10.1006/jcph.1999.6207
  10. G-S. Jiang and C-W. Shu, Efficient Implementation of Weighted ENO schemes, J. Comput. Phys. 126 (1996), 202-228 https://doi.org/10.1006/jcph.1996.0130
  11. P. D. Lax and X.-D. Liu, Solution of Two-Dimensional Riemann Problems of Gas Dynamics by Positive Schemes, SIAM J.Sci.Comput. 19 (1998), no. 2, 319-340 https://doi.org/10.1137/S1064827595291819
  12. P. D. Lax and B. Wendroff, Systems of conservation laws, Commun. Pure Appl. Math. 13 (1960), 217-237 https://doi.org/10.1002/cpa.3160130205
  13. R. Liska and B. Wendroff, Comparison of Serveral Difference Schemes on 1D and 2D Test Problems for the Euler Equations, SIAM J. Sci. Comput. 25 (2003), no. 3, 995-1017 https://doi.org/10.1137/S1064827502402120
  14. X.-D. LID and P. D. LAX, Positive Schemes for Solving Multi-dimensional Hyperbolic Systems of Conservation Laws, J. Comp. Fluid Dynam. 5 (1996) 133-156
  15. R. J. LeVeque, Numerical Methods for Conservation Laws, Birkhauser Verlag, Basel (1992)
  16. P. L. Roe, Approximate Riemann solvers, paremeter vectors, and difference schemes, J. Comp. Phys. 43 (1981), 357-372 https://doi.org/10.1016/0021-9991(81)90128-5
  17. T. Schmutzler and W. M. Tscharnuter, Effective radiative cooling in optically thin plasmas, Astronomy and Astrophysics 273 (1993), 318-330
  18. C.-W. Shu, Total-variation-diminshing time discretizations, SIAM J. Sci. Statist. Comput. 9 (1988), 1073-1084 https://doi.org/10.1137/0909073
  19. C.- W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock capturing schemes, II, J. Comput. Phys. 83 (1989), 32-78 https://doi.org/10.1016/0021-9991(89)90222-2
  20. P. K. Sweby, High resolution schemes using flux limiters hyperbolic conservation laws, SIAM J.Numer. Anal. 21 (1984), no. 5, 995-1011 https://doi.org/10.1137/0721062
  21. E. F. Taro, Riemann Solvers and Numerical Methods for Fluid Dynamics, SpringerVerlag, New York, 1997