Anti-inflammatory Effects of Resveratrol, (-)-Epigallocatechin-3-gallate and Curcumin by the Modulation of Toll-like Receptor Signaling Pathways

Toll-like receptors 신호전달체계 조절을 통한 resveratrol, (-)-epigallocatechin-3-gallate, curcumin의 항염증 효과

  • Published : 2007.10.31

Abstract

Toll-like receptors (TLRs) induce innate immune responses that are essential for host defenses against invading microbial pathogens, thus leading to the activation of adaptive immune responses. In general, TLRs have two major downstream signaling pathways: the MyD88- and TRIF-dependent pathways, which lead to the activation of $NF-{\kappa}B$ and IRF3. Numerous studies have demonstrated that certain phytochemicals possessing anti-inflammatory effects inhibit $NF-{\kappa}B$ activation induced by pro-inflammatory stimuli, including lipopolysaccharides and $TNF{\alpha}$. However, the direct molecular targets for such anti-inflammatory phytochemicals have not been fully identified. Identifying the direct targets of phytochemicals within the TLR pathways is important because the activation of TLRs by pro-inflammatory stimuli can induce inflammatory responses that are the key etiological conditions in the development of many chronic inflammatory diseases. In this paper we discuss the molecular targets of resveratrol, (-)-epigallocatechin-3-gallate (EGCG), and curcumin in the TLR signaling pathways. Resveratrol specifically inhibited the TRIF pathway in TLR3 and TLR4 signaling, by targetting TBK1 and RIP1 in the TRIF complex. Furthermore, EGCG suppressed the activation of IRF3 by targetting TBK1 in the TRIF-dependent signaling pathways. In contrast, the molecular target of curcumin within the TLR signaling pathways is the receptor itself, in addition to $IKK{\beta}$. Together, certain dietary phytochemicals can modulate TLR-derived signaling and inflammatory target gene expression, and in turn, alter susceptibility to microbial infection and chronic inflammatory diseases.

Keywords

innate immunity;Toll-like receptors;phytochemicals;resveratrol;(-)-epigallocatechin-3-gallate;curcumin;MyD88;TRIF

References

  1. Ulevitch RJ. Molecular mechanisms of innate immunity. Immunol. Res. 21: 49-54 (2000) https://doi.org/10.1385/IR:21:2-3:49
  2. Hoebe K, Janssen E, Beutler B. The interface between innate and adaptive immunity. Nat. Immunol. 5: 971-974 (2004) https://doi.org/10.1038/ni1004-971
  3. Rezaei N. Therapeutic targeting of pattern-recognition receptors. Int. Immunopharmacol. 6: 863-869 (2006) https://doi.org/10.1016/j.intimp.2006.02.005
  4. Vogel SN, Fitzgerald KA, Fenton MJ. TLRs: Differential adapter utilization by Toll-like receptors mediates TLR-specific patterns of gene expression. Mol. Interv. 3: 466-477 (2003) https://doi.org/10.1124/mi.3.8.466
  5. Miyake K. Innate recognition of lipopolysaccharide by Toll-like receptor 4-MD-2. Trends Microbiol. 12: 186-92 (2004) https://doi.org/10.1016/j.tim.2004.02.009
  6. Sato S, Sugiyama M, Yamamoto M, Watanabe Y, Kawai T, Takeda K, Akira S. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor- 3, in the Toll-like receptor signaling. J. Immunol. 171: 4304-4310 (2003) https://doi.org/10.4049/jimmunol.171.8.4304
  7. Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle. Cell 109: S81-S96 (2002) https://doi.org/10.1016/S0092-8674(02)00703-1
  8. Youn HS, Saitoh SI, Miyake K, Hwang DH. Inhibition of homodimerization of Toll-like receptor 4 by curcumin. Biochem. Pharmacol. 72: 62-69 (2006) https://doi.org/10.1016/j.bcp.2006.03.022
  9. Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer 3: 768-780 (2003) https://doi.org/10.1038/nrc1189
  10. Zingarelli B, Sheehan M, Wong HR. Nuclear factor-kappaB as a therapeutic target in critical care medicine. Crit. Care Med. 31: S105-S111 (2003) https://doi.org/10.1097/00003246-200301001-00015
  11. Hain R, Bieseler B, Kindl H, Schroder G, Stocker R. Expression of a stilbene synthase gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol. Plant Mol. Biol. 15: 325-335 (1990) https://doi.org/10.1007/BF00036918
  12. Kopp P. Resveratrol, a phytoestrogen found in red wine. A possible explanation for the conundrum of the 'French paradox'? Eur. J. Endocrinol. 138: 619-620 (1998) https://doi.org/10.1530/eje.0.1380619
  13. Martinez J, Moreno JJ. Effect of resveratrol, a natural polyphenolic compound, on reactive oxygen species and prostaglandin production. Biochem. Pharmacol. 59: 865-870 (2000) https://doi.org/10.1016/S0006-2952(99)00380-9
  14. Soriani M, Rice-Evans C, Tyrrell RM. Modulation of the UVA activation of haem oxygenase, collagenase and cyclooxygenase gene expression by epigallocatechin in human skin cells. FEBS Lett. 439: 253-257 (1998) https://doi.org/10.1016/S0014-5793(98)01387-8
  15. Chan MM, Fong D, Ho CT, Huang HI. Inhibition of inducible nitric oxide synthase gene expression and enzyme activity by epigallocatechin gallate, a natural product from green tea. Biochem. Pharmacol. 54: 1281-1286 (1997) https://doi.org/10.1016/S0006-2952(97)00504-2
  16. Yang F, Oz HS, Barve S, de Villiers WJ, McClain CJ, Varilek GW. The green tea polyphenol (-)-epigallocatechin-3-gallate blocks nuclear factor-kappa B activation by inhibiting I kappa B kinase activity in the intestinal epithelial cell line IEC-6. Mol. Pharmacol. 60: 528-533 (2001)
  17. Jobin C, Bradham CA, Russo MP, Juma B, Narula AS, Brenner DA, Sartor RB. Curcumin blocks cytokine-mediated NF-kappa B activation and proinflammatory gene expression by inhibiting inhibitory factor I-kappa B kinase activity. J. Immunol. 163: 3474-3483 (1999)
  18. Jeong WS, Kim IW, Hu R, Kong AN. Modulatory properties of various natural chemopreventive agents on the activation of NFkappaB signaling pathway. Pharm. Res. 21: 661-670 (2004) https://doi.org/10.1023/B:PHAM.0000022413.43212.cf
  19. Dinkova-Kostova AT, Massiah MA, Bozak RE, Hicks RJ, Talalay P. Potency of Michael reaction acceptors as inducers of enzymes that protect against carcinogenesis depends on their reactivity with sulfhydryl groups. P. Natl. Acad. Sci. USA 98: 3404-3409 (2001) https://doi.org/10.1073/pnas.051632198
  20. Tao X, Xu Y, Zheng Y, Beg AA, Tong L. An extensively associated dimer in the structure of the C713S mutant of the TIR domain of human TLR2. Biochem. Bioph. Res. Co. 299: 216-221 (2002) https://doi.org/10.1016/S0006-291X(02)02581-0
  21. Beutler B, Hoebe K, Du X, Ulevitch RJ. How we detect microbes and respond to them: The Toll-like receptors and their transducers. J. Leukocyte Biol. 74: 479-485 (2003) https://doi.org/10.1189/jlb.0203082
  22. Zhang H, Tay PN, Cao W, Li W, Lu J. Integrin-nucleated Tolllike receptor (TLR) dimerization reveals subcellular targeting of TLRs and distinct mechanisms of TLR4 activation and signaling. FEBS Lett. 532: 171-176 (2002) https://doi.org/10.1016/S0014-5793(02)03669-4
  23. Meylan E, Burns K, Hofmann K, Blancheteau V, Martinon F, Kelliher M, Tschopp J. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat. Immunol. 5: 503- 507 (2004) https://doi.org/10.1038/ni1061
  24. Takeda K, Akira S. Toll-like receptors in innate immunity. Int. Immunol. 17: 1-14 (2005)
  25. Bhat KP, Pezzuto JM. Cancer chemopreventive activity of resveratrol. Ann. NY Acad. Sci. 957: 210-229 (2002) https://doi.org/10.1111/j.1749-6632.2002.tb02918.x
  26. Lin YL, Lin JK. (-)-Epigallocatechin-3-gallate blocks the induction of nitric oxide synthase by down-regulating lipopolysaccharide- induced activity of transcription factor nuclear factor-kappaB. Mol. Pharmacol. 52: 465-472 (1997) https://doi.org/10.1124/mol.52.3.465
  27. Pan MH, Lin-Shiau SY, Lin JK. Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of IkappaB kinase and NFkappaB activation in macrophages. Biochem. Pharmacol. 60: 1665-1676 (2000) https://doi.org/10.1016/S0006-2952(00)00489-5
  28. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi- Castagnoli P, Layton B, Beutler B. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene. Science 282: 2085-2088 (1998) https://doi.org/10.1126/science.282.5396.2085
  29. Barthelman M, Bair WB 3rd, Stickland KK, Chen W, Timmermann BN, Valcic S, Dong Z, Bowden GT. (-)-Epigallocatechin-3- gallate inhibition of ultraviolet B-induced AP-1 activity. Carcinogenesis 19: 2201-2204 (1998) https://doi.org/10.1093/carcin/19.12.2201
  30. Metz N, Lobstein A, Schneider Y, Gosse F, Schleiffer R, Anton R, Raul F. Suppression of azoxymethane-induced preneoplastic lesions and inhibition of cyclooxygenase-2 activity in the colonic mucosa of rats drinking a crude green tea extract. Nutr. Cancer 38: 60-64 (2000) https://doi.org/10.1207/S15327914NC381_9
  31. Beutler B, Jiang Z, Georgel P, Crozat K, Croker B, Rutschmann S, Du X, Hoebe K. Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large. Annu. Rev. Immunol. 24: 353-389 (2006) https://doi.org/10.1146/annurev.immunol.24.021605.090552
  32. Ulevitch RJ. Therapeutics targeting the innate immune system. Nat. Rev. Immunol. 4: 512-520 (2004) https://doi.org/10.1038/nri1396
  33. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao SM, Maniatis T. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4: 491-496 (2003) https://doi.org/10.1038/ni921
  34. Medzhitov R. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1: 135-145 (2001) https://doi.org/10.1038/35100529
  35. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425: 191-196 (2003) https://doi.org/10.1038/nature01960
  36. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388: 394-397 (1997) https://doi.org/10.1038/41131
  37. Youn HS, Lee JY, Fitzgerald KA, Young HA, Akira S, Hwang DH. Specific inhibition of MyD88-independent signaling pathways of TLR3 and TLR4 by resveratrol: Molecular targets are TBK1 and RIP1 in TRIF complex. J. Immunol. 175: 3339-3346 (2005) https://doi.org/10.4049/jimmunol.175.5.3339
  38. Singh S, Aggarwal BB. Activation of transcription factor NFkappa B is suppressed by curcumin (diferuloylmethane). J. Biol. Chem. 270: 24995-25000 (1995) https://doi.org/10.1074/jbc.270.42.24995
  39. Akira S, Hemmi H. Recognition of pathogen-associated molecular patterns by TLR family. Immunol. Lett. 85: 85-95 (2003) https://doi.org/10.1016/S0165-2478(02)00228-6
  40. Underhill DM, Ozinsky A, Hajjar AM, Stevens A, Wilson CB, Bassetti M, Aderem A. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401: 811-815 (1999) https://doi.org/10.1038/44605
  41. Yang F, de Villiers WJ, McClain CJ, Varilek GW. Green tea polyphenols block endotoxin-induced tumor necrosis factor-production and lethality in a murine model. J. Nutr. 128: 2334-2340 (1998)
  42. Payton F, Sandusky P, Alworth WL. NMR study of the solution structure of curcumin. J. Nat. Prod. 70: 143-146 (2007) https://doi.org/10.1021/np060263s
  43. Pan MH, Lin-Shiau SY, Ho CT, Lin JH, Lin JK. Suppression of lipopolysaccharide-induced nuclear factor-kappaB activity by theaflavin-3,3'-digallate from black tea and other polyphenols through down-regulation of IkappaB kinase activity in macrophages. Biochem. Pharmacol. 59: 357-367 (2000) https://doi.org/10.1016/S0006-2952(99)00335-4
  44. Brouet I, Ohshima H. Curcumin, an anti-tumour promoter and anti-inflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages. Biochem Bioph. Res. Co. 206: 533-540 (1995) https://doi.org/10.1006/bbrc.1995.1076
  45. Hajjar AM, O'Mahony DS, Ozinsky A, Underhill DM, Aderem A, Klebanoff SJ, Wilson CB. Cutting edge: Functional interactions between Toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J. Immunol. 166: 15-19 (2001) https://doi.org/10.4049/jimmunol.166.1.15
  46. Rhee SH, Hwang D. Murine Toll-like receptor 4 confers lipopolysaccharide responsiveness as determined by activation of NF kappa B and expression of the inducible cyclooxygenase. J.Biol. Chem. 275: 34035-34040 (2000) https://doi.org/10.1074/jbc.M007386200
  47. Subbaramaiah K, Chung WJ, Michaluart P, Telang N, Tanabe T, Inoue H, Jang M, Pezzuto JM, Dannenberg AJ. Resveratrol inhibits cyclooxygenase-2 transcription and activity in phorbol ester-treated human mammary epithelial cells. J. Biol. Chem. 273: 21875-1882 (1998) https://doi.org/10.1074/jbc.273.34.21875
  48. Tsai SH, Lin-Shiau SY, Lin JK. Suppression of nitric oxide synthase and the down-regulation of the activation of NFkappaB in macrophages by resveratrol. Brit. J. Pharmacol. 126: 673-680 (1999) https://doi.org/10.1038/sj.bjp.0702357
  49. Rungeler P, Castro V, Mora G, Goren N, Vichnewski W, Pahl HL, Merfort I, Schmidt TJ. Inhibition of transcription factor NFkappaB by sesquiterpene lactones: A proposed molecular mechanism of action. Bioorg. Med. Chem. 7: 2343-2352 (1999) https://doi.org/10.1016/S0968-0896(99)00195-9
  50. Chan MM, Mattiacci JA, Hwang HS, Shah A, Fong D. Synergy between ethanol and grape polyphenols, quercetin, and resveratrol, in the inhibition of the inducible nitric oxide synthase pathway. Biochem. Pharmacol. 60: 1539-1548 (2000) https://doi.org/10.1016/S0006-2952(00)00471-8
  51. Youn HS, Lee JY, Saitoh SI, Miyake K, Kang KW, Choi YJ, Hwang DH. Suppression of MyD88- and TRIF-dependent signaling pathways of Toll-like receptor by (-)-epigallocatechin-3-gallate, a polyphenol component of green tea. Biochem. Pharmacol. 72: 850-859 (2006) https://doi.org/10.1016/j.bcp.2006.06.021
  52. Manna SK, Mukhopadhyay A, Aggarwal BB. Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-kappa B, activator protein-1, and apoptosis: potential role of reactive oxygen intermediates and lipid peroxidation. J. Immunol. 164: 6509-6519 (2000) https://doi.org/10.4049/jimmunol.164.12.6509
  53. Fujiki H. Green tea: Health benefits as cancer preventive for humans. Chem. Rec. 5: 119-132 (2005) https://doi.org/10.1002/tcr.20039
  54. Wheeler DS, Catravas JD, Odoms K, Denenberg A, Malhotra V, Wong HR. Epigallocatechin-3-gallate, a green tea-derived polyphenol, inhibits IL-1 beta-dependent proinflammatory signal transduction in cultured respiratory epithelial cells. J. Nutr. 134: 1039- 1044 (2004)
  55. Siedle B, Garcia-Pineres AJ, Murillo R, Schulte-Monting J, Castro V, Rungeler P, Klaas CA, Da Costa FB, Kisiel W, Merfort I. Quantitative structure-activity relationship of sesquiterpene lactones as inhibitors of the transcription factor NF-kappaB. J. Med. Chem. 47: 6042-6054 (2004) https://doi.org/10.1021/jm049937r
  56. Garcia-Pineres AJ, Castro V, Mora G, Schmidt TJ, Strunck E, Pahl HL, Merfort I. Cysteine 38 in p65/NF-kappaB plays a crucial role in DNA binding inhibition by sesquiterpene lactones. J. Biol. Chem. 276: 39713-39720 (2001) https://doi.org/10.1074/jbc.M101985200
  57. Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18: 6853-6866 (1999) https://doi.org/10.1038/sj.onc.1203239
  58. Hain R, Reif HJ, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreier PH, Stocker RH, Stenzel K. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361: 153-156 (1993) https://doi.org/10.1038/361153a0
  59. Ikeda I, Tsuda K, Suzuki Y, Kobayashi M, Unno T, Tomoyori H, Goto H, Kawata Y, Imaizumi K, Nozawa A, Kakuda T. Tea catechins with a galloyl moiety suppress postprandial hypertriacylglycerolemia by delaying lymphatic transport of dietary fat in rats. J. Nutr. 135: 155-159 (2005)
  60. O'Neill LA. TLRs: Professor Mechnikov, sit on your hat. Trends Immunol. 25: 687-693 (2004) https://doi.org/10.1016/j.it.2004.10.005
  61. Wadsworth TL, Koop DR. Effects of the wine polyphenolics quercetin and resveratrol on pro-inflammatory cytokine expression in RAW 264.7 macrophages. Biochem. Pharmacol. 57: 941-949 (1999) https://doi.org/10.1016/S0006-2952(99)00002-7
  62. Murakami A, Matsumoto K, Koshimizu K, Ohigashi H. Effects of selected food factors with chemopreventive properties on combined lipopolysaccharide- and interferon-gamma-induced IkappaB degradation in RAW264.7 macrophages. Cancer Lett. 195: 17-25 (2003) https://doi.org/10.1016/S0304-3835(03)00058-2
  63. Wang X, Song KS, Guo QX, Tian WX. The galloyl moiety of green tea catechins is the critical structural feature to inhibit fatty-acid synthase. Biochem. Pharmacol. 66: 2039-2047 (2003) https://doi.org/10.1016/S0006-2952(03)00585-9
  64. Yang TT, Koo MW. Inhibitory effect of Chinese green tea on endothelial cell-induced LDL oxidation. Atherosclerosis 148: 67- 73 (2000) https://doi.org/10.1016/S0021-9150(99)00239-7
  65. Kang G, Kong PJ, Yuh YJ, Lim SY, Yim SV, Chun W, Kim SS. Curcumin suppresses lipopolysaccharide-induced cyclooxygenase- 2 expression by inhibiting activator protein 1 and nuclear factor $\kappa$B bindings in BV2 microglial cells. J. Pharmacol. Sci. 94: 325- 328 (2004) https://doi.org/10.1254/jphs.94.325
  66. Pervaiz S. Resveratrol: From grapevines to mammalian biology. FASEB J. 17: 1975-1985 (2003) https://doi.org/10.1096/fj.03-0168rev
  67. Liew FY, Xu D, Brint EK, O'Neill LA. Negative regulation of Toll-like receptor-mediated immune responses. Nat. Rev. Immunol. 5: 446-458 (2005) https://doi.org/10.1038/nri1630
  68. Sharma RA, Gescher AJ, Steward WP. Curcumin: The story so far. Eur. J. Cancer 41: 1955-1968 (2005) https://doi.org/10.1016/j.ejca.2005.05.009