Quality and Functional Properties of Red Ginseng Prepared with Different Steaming Time and Drying Methods

원료삼의 증삼 및 건조 조건별 홍삼의 품질 및 기능성

  • Published : 2007.10.31

Abstract

The quality and functional properties of red ginseng in relation to steaming and drying conditions were evaluated. Fresh ginseng (5-year roots), cultivated in the Punggi region, were steamed for 2.5, 3.5, or 4.5 hr, and then dried by hot-air (60-$65^{\circ}C$/24 hr and $40^{\circ}C$,/3-4d) freezing ($-80^{\circ}C$/56 hr), and infrared (900 W/$62^{\circ}C$/68 hr). Hunter#s yellowness (b-value) and browning indexes (420 nm) of the samples were higher in the rootlets than in the main roots. Furthermore, these same index values were found to be high in the order of 3.5, 4.5, and 2.5 hr and infrared, hot-air, and freezing for steaming and subsequent drying, respectively. Analysis of soluble solids, total phenolics, total flavonoids, acidic polysaccharides, and electron donating abilities of the steamed and dried samples showed that 3.5hr of steaming with infrared drying was optimal. However, crude saponin contents were not influenced by steaming and drying conditions. The contents of $ginsenoside-Rg_l$, -Re, -Rf and $-Rb_2$, which were the major components in the samples, were reduced with steaming time, while the amounts of $-Rg_3$ and $-Rh_2$ increased, reaching the highest levels at 3.5 and 4.5 hr in the main roots and rootlets, respectively. The contents of $-Rg_3$ and $-Rh_2$ were similar in both the freeze-dried and hot-air dried samples.

Keywords

red ginseng;steaming;drying;functional properties;ginsenoside

References

  1. Kwon JH, Belanger JMR, Pare JRJ. Optimization of microwaveassisted extraction (MAP) for ginseng components by response surface methodology. J. Agr. Food Chem. 51: 1807-1810 (2003) https://doi.org/10.1021/jf026068a
  2. Do JH, Lee HO, Lee SK, Jang JK. Colorimetic determination of acidic polysaccharide of red ginseng on lipolitic action of toxohormone- L form panax ginseng, its extraction condition and stability. Korean J. Ginseng Sci. 17: 139-144 (1993)
  3. Blios MS. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1203 (1958) https://doi.org/10.1038/1811199a0
  4. Ryu GH. Present status of red ginseng products and its manufacturing process. Food Ind. Nutr. 8: 38-42 (2003)
  5. Kato H, Lee IE, Chuyen NV, Kim SB, Hayase F. Inhibition of nitrosamine formation by nondialyzable melanoidens. Agr. Biol. Chem. Tokyo 51: 1333-1338 (1987) https://doi.org/10.1271/bbb1961.51.1333
  6. Park CK, Kwak YS, Hwang MS, Kim SC, Do JH. Trends and prospect of ginseng products in market health functional food. Food Sci. Ind. 40: 30-45 (2007)
  7. Lee CR, Whang WK, Shin CG, Lee HS, Han ST, Im BO, Ko SK. Comparison of composition and contents in fresh ginseng roots cultivated in Korea, Japan, and China at various ages. Korean J. Food Sci. Technol. 36: 847-850 (2004)
  8. SAS Institute, Inc. SAS User's Guide. Statistical Analysis Systems Institute, Cary, NC, USA (2003)
  9. Lee JM, Son ES, Oh SS, Han DS. Contents of total flavonoid and biological activities of edible plants. Korean J. Diet. Culture 16: 504-515 (2001)
  10. Yoon SR, Lee MH, Park JH, Lee IS, Kwon JH, Lee GD. Changes in physicochemical compounds with heating treatment of ginseng. J. Korean Soc. Food Sci. Nutr. 34: 1572-1578 (2005) https://doi.org/10.3746/jkfn.2005.34.10.1572
  11. Noh JE, Choi YK, Kim HK, Kwon JH. Pre-establishment of microwave-assisted extraction condition for antioxidative extracts from cabbage. Korean J. Food Preserv. 12: 62-67 (2005)
  12. Amerine MA, Ough CS. Method for analysis of musts and wine. Wiley & Sons, New York, NY, USA. pp. 176-180 (1980)
  13. Park MH, Kim KC, Kim JS. Changes in the physicochemical properties of ginseng by roasting. Korean J. Ginseng Sci. 17: 228-231 (1993)
  14. KG & TRI. New Korean Ginseng. Korea Ginseng & Tabacco Research Institute. Daejeon, Korea. pp. 13-260 (1996)