DOI QR코드

DOI QR Code

A NOTE ON DECOMPOSITION OF COMPLETE EQUIPARTITE GRAPHS INTO GREGARIOUS 6-CYCLES

  • Cho, Jung-Rae (DEPARTMENT OF MATHEMATICS PUSAN NATIONAL UNIVERSITY)
  • Published : 2007.11.30

Abstract

In [8], it is shown that the complete multipartite graph $K_{n(2t)}$ having n partite sets of size 2t, where $n{\geq}6\;and\;t{\geq}1$, has a decomposition into gregarious 6-cycles if $n{\equiv}0,1,3$ or 4 (mod 6). Here, a cycle is called gregarious if it has at most one vertex from any particular partite set. In this paper, when $n{\equiv}0$ or 3 (mod 6), another method using difference set is presented. Furthermore, when $n{\equiv}0$ (mod 6), the decomposition obtained in this paper is ${\infty}-circular$, in the sense that it is invariant under the mapping which keeps the partite set which is indexed by ${\infty}$ fixed and permutes the remaining partite sets cyclically.

Keywords

multipartite graph;graph decomposition;gregarious cycle;difference set

References

  1. E. Billington and D. G. Hoffman, Decomposition of complete tripartite graphs into gre- garious 4-cycles, Discrete Math. 261 (2003), no. 1-3, 87-111 https://doi.org/10.1016/S0012-365X(02)00462-4
  2. E. Billington and D. G. Hoffman, Equipartite and almost-equipartite gregarious 4-cycle decompositions, preprint
  3. E. Billington, D. G. Hoffman, and C. A. Rodger, Resolvable gregarious cycle decompo- sitions of complete equipartite graphs, Preprint
  4. G. Chartrand and L. Lesniak, Graphs & digraphs: Fourth edition, Chapman & Hall/CRC, Boca Raton, FL, 2005
  5. J. R. Cho, M. J. Ferrara, R. J. Gould, and J. R. Schmitt, A difference set method for cir- cular decompositions of complete mutipartite graphs into gregarious 4-cycles, Submitted for publication
  6. J. R. Cho and R. J. Gould, Decompositions of complete multipartite graphs into gregar- ious 6-cycles using difference sets, To appear in J. Korean Math. Soc. https://doi.org/10.4134/JKMS.2008.45.6.1623
  7. J. Liu, A generalization of the Oberwolfach problem and $C_t$-factorizations of complete equipartite graphs, J. Combin. Des. 8 (2000), no. 1, 42-49 https://doi.org/10.1002/(SICI)1520-6610(2000)8:1<42::AID-JCD6>3.0.CO;2-R
  8. M. Sajna, On decomposing $K_n$ - I into cycles of a fixed odd length, Discrete Math. 244 (2002), no. 1-3, 435-444 https://doi.org/10.1016/S0012-365X(01)00099-1
  9. M. Sajna, Cycle decompositions. III. Complete graphs and fixed length cycles, J. Combin. Des. 10 (2002), no. 1, 27-78 https://doi.org/10.1002/jcd.1027
  10. D. Sotteau, Decomposition of $K_{m,n}(K^*_{m,n})$ into cycles (circuits) of length 2k, J. Combin. Theory Ser. B 30 (1981), no. 1, 75-81 https://doi.org/10.1016/0095-8956(81)90093-9
  11. B. Alspach and H. Gavlas, Cycle decompositions of $K_n$ and $K_n$ - I, J. Combin. Theory Ser. B 81 (2001), no. 1, 77-99 https://doi.org/10.1006/jctb.2000.1996
  12. N. J. Cavenagh and E. J. Billington, Decomposition of complete multipartite graphs into cycles of even length, Graphs Combin. 16 (2000), no. 1, 49-65 https://doi.org/10.1007/s003730050003
  13. J. Liu, The equipartite Oberwolfach problem with uniform tables, J. Combin. Theory Ser. A 101 (2003), no. 1, 20-34 https://doi.org/10.1016/S0097-3165(02)00011-0

Cited by

  1. CIRCULANT DECOMPOSITIONS OF CERTAIN MULTIPARTITE GRAPHS INTO GREGARIOUS CYCLES OF A GIVEN LENGTH vol.30, pp.3, 2014, https://doi.org/10.7858/eamj.2014.021
  2. Some gregarious kite decompositions of complete equipartite graphs vol.313, pp.5, 2013, https://doi.org/10.1016/j.disc.2012.10.017
  3. ON DECOMPOSITIONS OF THE COMPLETE EQUIPARTITE GRAPHS Kkm(2t)INTO GREGARIOUS m-CYCLES vol.29, pp.3, 2013, https://doi.org/10.7858/eamj.2013.024