DOI QR코드

DOI QR Code

HALF-FACTORIALITY OF D[S]

  • Shah, Tariq (DEPARTMENT OF MATHEMATICS QUAID-I-AZAM UNIVERSITY)
  • Published : 2007.11.30

Abstract

In this note we discussed the half-factoriality of Krull monoid domain D[S] whenever the monoid S has trivial divisor class group.

Keywords

monoid domain;HFD;class group;Krull monoid;Krull domain

References

  1. D. D. Anderson, D. F. Anderson, and M. Zafrullah, Rings between D[X] and K[X], Houston J. Math. 17 (1991), no. 1, 109-129
  2. D. F. Anderson and A. Ryckaert, The class group of D + M, J. Pure Appl. Algebra 52(1988), no. 3, 199-212 https://doi.org/10.1016/0022-4049(88)90091-6
  3. P. M. Cohn, Bezout rings and their subrings, Proc. Cambridge Philos. Soc. 64 (1968), 251-264 https://doi.org/10.1017/S0305004100042791
  4. J. Coykendall, A characterization of polynomial rings with the half-factorial property, Factorization in integral domains (Iowa City, IA, 1996), 291-294, Lecture Notes in Pure and Appl. Math., 189, Dekker, New York, 1997
  5. R. Gilmer, Commutative semigroup rings, Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1984
  6. R. Gilmer and T. Parker, Divisibility properties in semigroup rings, Michigan Math. J. 21 (1974), 65-86 https://doi.org/10.1307/mmj/1029001210
  7. B. G. Kang, Divisibility properties of group rings over torsion-free abelian groups, Comment. Math. Univ. St. Paul. 48 (1999), no. 1, 19-24
  8. A. Zaks, Half factorial domains, Bull. Amer. Math. Soc. 82 (1976), no. 5, 721-723 https://doi.org/10.1090/S0002-9904-1976-14130-4
  9. A. Zaks, Half-factorial-domains, Israel J. Math. 37 (1980), no. 4, 281-302 https://doi.org/10.1007/BF02788927
  10. L. G. Chouinard, II, Krull semigroups and divisor class groups, Canad. J. Math. 33 (1981), no. 6, 1459-1468 https://doi.org/10.4153/CJM-1981-112-x
  11. R. M. Fossum, The divisor class group of a Krull domain, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 74. Springer-Verlag, New York-Heidelberg, 1973