DOI QR코드

DOI QR Code

EXTENSIONS OF EXTENDED SYMMETRIC RINGS

  • Kwak, Tai-Keun (DEPARTMENT OF MATHEMATICS DAEJIN UNIVERSITY)
  • Published : 2007.11.30

Abstract

An endomorphism ${\alpha}$ of a ring R is called right(left) symmetric if whenever abc=0 for a, b, c ${\in}$ R, $ac{\alpha}(b)=0({\alpha}(b)ac=0)$. A ring R is called right(left) ${\alpha}-symmetric$ if there exists a right(left) symmetric endomorphism ${\alpha}$ of R. The notion of an ${\alpha}-symmetric$ ring is a generalization of ${\alpha}-rigid$ rings as well as an extension of symmetric rings. We study characterizations of ${\alpha}-symmetric$ rings and their related properties including extensions. The relationship between ${\alpha}-symmetric$ rings and(extended) Armendariz rings is also investigated, consequently several known results relating to ${\alpha}-rigid$ and symmetric rings can be obtained as corollaries of our results.

Keywords

reduced rings;symmetric rings;(extended) Armendariz rings

References

  1. D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272 https://doi.org/10.1080/00927879808826274
  2. D. D. Anderson and V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), no. 6, 2847-2852 https://doi.org/10.1080/00927879908826596
  3. M. Baser, C. Y. Hong, and T. K. Kwak, On extended reversible rings, Algebra Colloq. (to appear)
  4. P. M. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641-648 https://doi.org/10.1112/S0024609399006116
  5. J. M. Habeb, A note on zero commutative and duo rings, Math. J. Okayama Univ. 32 (1990), 73-76
  6. C. Y. Hong, N. K. Kim, and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra 151 (2000), no. 3, 215-226 https://doi.org/10.1016/S0022-4049(99)00020-1
  7. C. Y. Hong, T. K. Kwak, and S. T. Rizvi, Extensions of generalized Armendariz rings, Algebra Colloq. 13 (2006), no. 2, 253-266 https://doi.org/10.1142/S100538670600023X
  8. C. Huh, H. K. Kim, N. K. Kim, and Y. Lee, Basic examples and extensions of symmetric rings, J. Pure Appl. Algebra 202 (2005), no. 1-3, 154-167 https://doi.org/10.1016/j.jpaa.2005.01.009
  9. C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761 https://doi.org/10.1081/AGB-120013179
  10. J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289-300
  11. G. Marks, Reversible and symmetric rings, J. Pure Appl. Algebra 174 (2002), no. 3, 311-318 https://doi.org/10.1016/S0022-4049(02)00070-1
  12. M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17 https://doi.org/10.3792/pjaa.73.14
  13. G. Y. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60 https://doi.org/10.2307/1996398
  14. E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470-473 https://doi.org/10.1017/S1446788700029190
  15. C. Y. Hong, N. K. Kim, and T. K. Kwak, On skew Armendariz rings, Comm. Algebra 31 (2003), no. 1, 103-122 https://doi.org/10.1081/AGB-120016752
  16. J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359-368 https://doi.org/10.4153/CMB-1971-065-1

Cited by

  1. On Extensions of Right Symmetric Rings without Identity vol.04, pp.12, 2014, https://doi.org/10.4236/apm.2014.412075