DOI QR코드

DOI QR Code

3-DESIGNS DERIVED FROM PLANE ALGEBRAIC CURVES

  • Yu, Ho-Seog (DEPARTMENT OF APPLIED MATHEMATICS SEJONG UNIVERSITY)
  • Published : 2007.11.30

Abstract

In this paper, we develop a simple method for computing the stabilizer subgroup of a subgroup of $$D(g)={{\alpha}{\in}\mathbb{F}_q|there\;is\;a\;{\beta}{\in}{\mathbb{F}}^x_q\;such\;that\;{\beta}^n=g(\alpha)}$$ in $PSL_2(\mathbb{F}_q)$, where q is a large odd prime power, n is a positive integer dividing q-1, and $g(x){\in}\mathbb{F}_q[x]$. As an application, we construct new infinite families of 3-designs (cf. Examples 3.4 and 3.5).

Keywords

3-designs;stabilizer group

References

  1. T. Beth, D. Jungnickel, and H. Lenz, Design theory, Vol. 1, second ed., Encycl. Math. Appl., 69, Cambridge University Press, Cambridge, 1999
  2. M. D. Fried and M. Jarden, Field Arithmetic, Springer-Verlag, Berlin, 2005
  3. S. Iwasaki, Translations of the squares in a finite field and an infinite family of 3-designs, European J. Combin. 24 (2003), no. 3, 253-266 https://doi.org/10.1016/S0195-6698(03)00015-5
  4. D. L. Kreher, t-designs t $\geq$ 3, in: The CRC Handbook of Combinatorial Designs (C. J. Colbourn and J. H. Dinitz Editors), CRC Press, Boca Raton (1996), 47-66
  5. B.-K. Oh, J. Oh, and H. Yu, New infinite families of 3-designs from algebraic curves over $F_q$, European J. Combin. 28 (2007), no. 4, 1262-1269 https://doi.org/10.1016/j.ejc.2006.01.009
  6. B.-K. Oh and H. Yu, New infinite families of 3-designs from algebraic curves of higher genus over finite fields, Electron. J. Combin. 14 (2007), no. 1, Note 25
  7. S. A. Stepanov, Arithmetic of algebraic curves, Monographs in Contemporary Mathe- matics. Consultants Bureau, New York, 1994