DOI QR코드

DOI QR Code

PRESENTING MATRICES OF MAXIMAL COHEN-MACAULAY MODULES

  • Published : 2007.11.30

Abstract

We define a numerical invariant $row_{CM}(A)$ over Cohen-Macaulay local ring A, which is related to rows of the presenting matrices of maximal Cohen-Macaulay modules without free summands. We show that $row(A)=row_{CM}(A)$ for a Cohen-Macaulay(not necessarily Gorenstein) local ring A.

Keywords

column and row invariants;maximal Cohen-Macaulay modules;syzygy modules;Cohen-Macaulay ring

References

  1. S. Ding, A note on the index of Cohen-Macaulay local rings, Comm. Algebra 21 (1993), no. 1, 53-71 https://doi.org/10.1080/00927879208824550
  2. D. Eisenbud, Commutative algebra, With a view toward algebraic geometry, Graduate Texts in Mathematics, 150. Springer-Verlag, New York, 1995
  3. J. Koh and K. Lee, Some restrictions on the maps in minimal resolutions, J. Algebra 202 (1998), no. 2, 671-689 https://doi.org/10.1006/jabr.1997.7310
  4. J. Koh and K. Lee, New invariants of Noetherian local rings, J. Algebra 235 (2001), no. 2, 431-452 https://doi.org/10.1006/jabr.2000.8506
  5. J. Koh and K. Lee, On column invariant and index of Cohen-Macaulay local rings, J. Korean Math. Soc. 43 (2006), no. 4, 871-883 https://doi.org/10.4134/JKMS.2006.43.4.871
  6. K. Lee, Column invariants over Cohen-Macaulay local rings, Comm. Algebra 33 (2005), no. 5, 1303-1314 https://doi.org/10.1081/AGB-200060500
  7. G. J. Leuschke, Gorenstein modules, finite index, and finite Cohen-Macaulay type, Comm. Algebra 30 (2002), no. 4, 2023-2035 https://doi.org/10.1081/AGB-120013229
  8. K. Lee, Computation of numerical invariants col(-), row(-) for a ring k[[$[t^e,\;t^{e+1},t^{(e-1)e-1}$]], J. Korean Math. Soc. 37 (2000), no. 4, 521-530

Cited by

  1. Various Row Invariants on Cohen-Macaulay Rings vol.7, pp.4, 2014, https://doi.org/10.13160/ricns.2014.7.4.278