An Experimental Investigation of Bending Fatigue Strength in Table Liner for Cement Mill

시멘트 분쇄기용 테이블 라이너의 굽힘 피로강도의 실험적 조사

  • 백석흠 (동아대학교 대학원 기계공학과) ;
  • 이경영 (강원대학교 자동차공학과) ;
  • 조석수 (강원대학교 자동차공학과) ;
  • 장득열 (강원대학교 기계공학과) ;
  • 주원식 (동아대학교 기계공학과)
  • Published : 2007.12.01


The vertical roller mill, which performs the grinding and partly blending of raw material, is the one of the important machine to produce ordinary portland cement. It has been reported that an unexpected fatigue failure occurred in a table liner in the course of grinding portland cement. The life of table liner is estimated to $4{\times}10^7$ cycles in the design stage, but at the field, when its operating time reaches to $2{\times}10^6{\sim}8{\times}10^6$ cycles, the fracture of table liner begins to be found. The fracture of table liner is initiated from the outside edge of grinding path contacting with the grinding roller. Its maintenance normally take 30 % of the total maintenance costs of the roller mill. Therefore, this study shows the clarification of the reasons occurring the fatal destruction of the table liner by fatigue fracture analysis utilizing fracture mechanics and by the finite element method. And, the results from Goodman diagram illustrate relationship of including information on the transition between tensile and bending fatigue strength in the fatigue characterization of table liner.


  1. Goodman, J., 1899, Mechanics Applied to Engineering, Longmans, Green, and Co., London
  2. Wang, S., Dixon, M. W., Huey, C. O. and Chen, S., 2000, 'The Clemson Limit Stress Diagram for Ductile Parts Subjected to Positive Mean Fatigue Loading,' ASME J. Mech. Des., Vol. 122, pp. l43-146
  3. Sutherland, H. J. and Mandell, J. F., 2004, 'Effect of Mean Stress on the Damage of Wind Turbine Blades,' ASME J. Sol. Energy Eng., Vol. 126, pp. 1041-1049
  4. Hong, S. H., Cho, S. S. and Joo, W. S., 2001, 'A Study on Failure Analysis of Low Pressure Turbine Bl ade using AFM and FEM,' Trans. of the KSME(A), Vol. 25, No. 11, pp. 1705-1712
  5. Mandell, J. F., Samborsky, D. D., Wang, L. and Wahl, N. K., 2003, 'New Fatigue Data for Wind Turbine Blade Materials,' ASME J. Sol. Energy Eng., Vol. 125, pp. 506-514
  6. Sutherland, H. J. and Mandell, J. F., 2005, 'Optimized Constant-Life Diagram for the Analysis of Fiberglass Composites Used in Wind Turbine Blades,' ASME J. Sol. Energy Eng., Vol. 127, pp. 563-569
  7. ASTM Standard E8M-94a, 1994, Standard Test Methods for Tension Testing of Metallic Materials, ASTM Standards Sec. 3, Vol. 3, No. 1, pp. 81-100
  8. Peterson, R. E., 1953, Stress Concentration Design Fracture, John Willey & Sons, p. 44
  9. Yum, Y. H., 2000, Material and Testing Methods, Dong-Myung Publishing Company, pp. 249-250
  10. Duck-Won Industry Co. Ltd., 2000, RIM Table Liner Inspection Report Tong Yang Major Corporation
  11. Baek, S. H., Cho, S. S., Kim, H. S. and Joo, W. S., 2006, 'Tarde-off Analysis in Multi-objective Optimization Using Chebyshev Orthogonal Polynomials,' Journal of Mechanical Science and Technology, Vol. 20, No. 3, pp. 366-375
  12. Norton, R. L., 1999, Machine Design: An Integrated Approach, Prentice Hill, Inc
  13. Collins, J. A., 1993, Failure of Materials in Mechanical Design, Willy Interscience Publication, pp. 207-213
  14. SM, 1996, Fatigue and Fracture, ASM handbook, Vol. 19, pp. 314-320
  15. Kim, S. W., Hong, S. H., Jeon, H. Y., Cho, S. S. and Joo, W. S., 2002, 'A Study on the Failure Mechanism of Turbine Blade using X-Ray Diffraction and FEM,' Trans. of the KSME(A), Vol. 26, No. 8, pp. 1656-1652
  16. ASTM E399-90, 1994, Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials, Annual Book of ASTM Standards, Vol. 03.10, pp. 407-37
  17. Ahmed, R. and Hadfield, M., 1999, 'Failure Modes of Plasma Sprayed WC-15%Co Coated Rolling Elements,' Wear, Vol. 230, No. 1, pp. 39-55