The Interpreter for the Bounded of the Uncertainty to transfer a Class of Time-varying Linear System with the uncertainty to the Time-invarying Linear System

불확실성을 갖는 선형 시변 시스템의 선형 시불변 시스템 변환을 위한 불확실성 유계 해석

  • Cho, Do-Hyeoun (Dept. of Digital Electronics & Information, Inha Tech. Col.) ;
  • Lee, Jong-Yong (Division of General Education, Kwang-woon University)
  • 조도현 (인하공업대학 디지털전자정보과) ;
  • 이종용 (광운대학교 교양학부)
  • Published : 2007.12.25

Abstract

In this paper, we consider the input-state(I/S) transformation for the time-varying linear system with the uncertainty because of to determine the bounded range of the uncertainty. And we get the time-invarying linear system after the I/S transformation. We present the necessary sufficient condition for the I/S transformation. The transformed system represent the system with the multiple integral. We verify the proposal algorithm via the example and examine.

References

  1. R. Ravi, K. M. Nagpal & P. P. Khargonekar '$H_{\infty}$ Control of Linear Time-Varying Systems: A State Space Approach', SIAM J. Control and Optimization, vol-29, no-6, pp. 1349-1413, 1991
  2. A. Feintuch & B. A. Francis, 'Uniformly Optimal Control of Linear Time-Varying Systems', Systems and Control Letters, vol-5, pp. 67-71, 1984 https://doi.org/10.1016/0167-6911(84)90011-2
  3. P. P. Khargonekar, R. Petersen & K. Zhou, 'Robust Stabilization of Uncertain Linear Systems: Quadratic Stabilizability and $H_{\infty}$ Control Theory', IEEE Trans. Auto. Contr., vol-35, no-3, pp. 356-361, 1990 https://doi.org/10.1109/9.50357
  4. L. Xie & C. E. de Souza, 'Robust $H_{\infty}$ Control for Linear Systems with Norm-Bounded Time-Varying Uncertainty', IEEE Trans. Auto. Contr., vol-37, no-8, pp. 1188-1191, 1990 https://doi.org/10.1109/9.151101
  5. 이종용, '완전 선형화 방법에 의한 로봇 매니퓰 레이터의 강건한 제어', 광운대학교 박사학위 논문 1993
  6. 이종용, 이상효, '확장된 비선형 궤환 선형화를 이용한시변 비선형 제어', 전기학회 논문집 vol-42, no-5, pp .97-105, 1993
  7. M. Vidyasagar , Nonlinear System Analysis , Prentice-Hall, 1993
  8. A. Isidori, Nonlinear Control Systems, Springer-Verlag , 1989
  9. I. R. Petersen, 'Stabilization of an Uncertain Linear System in Which Uncertain Parameters Enter into The Input Matrix', SIAM J. Contr. Optimiz., vol-26, no-6, pp. 1257-1264, 1988 https://doi.org/10.1137/0326069
  10. I. R. Petersen, 'A Stabilization Algorithem for a Class of Uncertain Linear Systems', Syst. Contr. Lett., vol-8, pp. 351-357, 1987 https://doi.org/10.1016/0167-6911(87)90102-2
  11. B. R. Barmish, 'Necessary and Sufficient Conditions for Quadratic Stabilizability of an Uncertain Linear Systems', J. Optimiz. Theory Appl., vol-46, no-4, pp. 399-408, 1985 https://doi.org/10.1007/BF00939145
  12. R. Marino & P. Tomei, 'Robust Stabilization of Feedback Linearizable Time-Varying Uncertain Nonlinear Systems', Automatica, vol-29, no-1, pp. 181-189, 1993 https://doi.org/10.1016/0005-1098(93)90181-R
  13. K. S. Tsakalis & P. A. Ioannou, Linear Time-Varying Systems Control and Adaptation, Prentice Hall, 1993
  14. J. J. E. Slotine & W. Li, Applied Nonlinear Control, Prentice-Hall, 1991
  15. 조도현, 이상효, '상태 변환을 이용한 선형 시변 시스템에 대한 강건한 제어', 제어자동화시스템공학 논문지 제4권 제1호 pp1-9, 1998
  16. Choi H.L. and LIM J.T., 'Feedback linearisation of time-varying nonlinear systems via timevarying diffeomorphism' IEE Proc. Control Theory Appl., Vol 150, No 3, pp. 279-284, 2003