Kappa(2) 커버리지 함수를 이용한 ENHPP소프트웨어 신뢰성장모형에 관한 연구

김 희 철*

The Study for ENHPP Software Reliability Growth Model Based on Kappa(2) Coverage Function

Hee-Cheul Kim*

요 약

유한고장수를 가진 비등절적인 포아송 과정에 기초한 모형들에서 전존 오류 1개당 고장 발생률은 일반적으로 상수, 혹은 단조증가 및 단조 감소 추세를 가지고 있다. 소프트웨어 제품의 정확한 인도시기를 예측하려나 효율성 및 신뢰성을 예측하기 위해서는 소프트웨어 테스팅 과정에서 중요한 요소인 테스트 커버리지를 이용하면 보다 효율적인 테스팅 작업을 할 수 있다. 이런 모형은 ENHPP 모형이라고 한다. 본 논문에서는 기존의 소프트웨어 신뢰성 모형인 지수 커버리지 모형과 S-커버리지 모형을 제조품이 보다 적절히 설명할 수 있는 Kappa 분포를 이용한 모형인 Kappa 커버리지 모형을 제안하였다. 고장 간격시간으로 구성된 자료를 이용한 모수 추정 방법은 최우추정법과 일반적인 수치해석 방법의 이분법을 사용하여 모두 추정을 실시하고 효율적인 모형 선택은 편차자승합(SSE) 및 클 모모로프 커버리지를 적용하여 모형들에 대한 효율적인 모형 선택도 시도하였다. 수치적인 예에서는 실제 고장자료를 통하여 분석하였다. 이 자료들에서 기존의 모형과 Kappa 커버리지 모형의 비교를 위하여 산술적 및 라플라스 검정, 편의 검정 등을 이용하였다.

ABSTRACT

Finite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. Accurate predictions of software release times, and estimation of the reliability and availability of a software product require Release times of a critical element of the software testing process: test coverage. This model called Enhanced non-homogeneous Poisson process(ENHPP). In this paper, exponential coverage and S-shaped model was reviewed, proposes the Kappa coverage model, which make out efficiency application for software reliability. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method, model selection based on SSE statistics and Kolmogorov distance, for the sake of efficient model, was employed. Numerical examples using real data set for the sake of proposing Kappa coverage model was employed. This analysis of failure data compared with the Kappa coverage model and the existing model(using arithmetic and Laplace trend tests, bias tests) is presented.

키워드

Test Coverage, ENHPP, Kappa Distribution, Kolmogorov Distance

* 남서울대학교 산업경영공학과 접수일자: 2007. 7. 6
I. 서론

소프트웨어 테스팅 단계에서 소프트웨어 고장수(Number of failure)와 고장간격시간에 의해 소프트웨어고장현상을 수리적으로 모형화하면 소프트웨어에 대한 평가를 보다 쉽게 할 수 있으며 신뢰도 모형에 의해 소프트웨어 고장 수, 소프트웨어 고장발생간격시간, 소프트웨어 신뢰도 및 고장률 등의 신뢰성 평가측도들이 추정되어 미래의 고장시간을 예측할 수도 있다.

이 범주에서 지금까지 알려진 모형들은 Goel-Okumoto 모형, Weibull 모형 그리고 Cox-Lewis 모형 등이 있는데 이러한 모형들은 고장도수를 각각 시간에 의존한 함수, 역(Power) 함수, 대수 선형(Log-linear) 함수를 가정하였다[1,2].

소프트웨어 제품의 정확한 인도시키(Release times)를 예측하거나 효율성 및 신뢰성을 예측하기 위해서는 소프트웨어 테스팅 과정에서 중요한 요소인 테스트 커버리지(Coverage)를 이용하면 보다 효율적인 테스팅 작업을 할 수 있다.

이러한 모형은 기존에 존재하는 NHPP모형에서 테스트 커버리지를 포함하는 모형이 된다. 이런 모형을 ENHPP(Enhanced non-homogeneous Poission process)이라고 한다[3,4].

본 논문에서는 분포함수가 효율적으로 사용할 수 있는 2모수 Kappa 분포[5,6]을 이용한 Kappa 커버리지 함수를 제안하여 모형의 효율성과 그 특성을 알아보고자 한다.

II. 이론적 배경에 대한 고찰

2.1. 테스트 커버리지

프로그램 검사 능력과 테스트 커버리지(Coverage)는 관리성 있는 개념이다.

검사능력은 하나의 프로그램 상에서 검사할 수 있는 용이성이란 커버리지는 프로그램 상에서 숨겨진 잠재적인 오류 위치들을(All potential fault-sites) 충분하게 찾아낼 수 있는 척도(Measure)를 제공한다. 여기서 잠재적인 오류 사이트들은 구조적으로나 기능적으로 명백히 설명할 수 있는 프로그램의 요소라고 정의할 수 있고 이런 요소들은 합당하게 설계된 테스트를 통해 입중성이나 타당성이 요구되는 보전성(Integrity)을 가지고 있어야 한다[3,4].

따라서 프로그램 검사 능력과 테스트 커버리지는 다음과 같은 요인에 의해 영향을 받는다.

(1) 프로그램의 루경성, (2) 소프트웨어 개발 이론, (3) 사용된 소프트웨어 도구(Tools), (4) 테스트 절(Quality), (5) 테스트의 효율성.

테스트 커버리지를 위한 연구는 이미 여러 학자들에 의하여 연구되었다[7, 8]. 그러나 소프트웨어 개발자나 사용자들은 테스트 커버리지를 측정 할 수 있는 효율적인 루경 도구들을 원하고 있다. 이러한 도구들은 소프트웨어 제품의 인도시키를 빠르고 정확한 테스팅이 이루어져야 한다.

테스트 커버리지는 테스팅 작업 하에서 소프트웨어 제품에 숨겨진 잠재적인 모든 오류 사이트들을 얼마나 찾아낼 수 있는지를 평가하는 척도이다. 그러므로 잠재 오류 사이트와 오류 사이트는 서로 만감성을 가지고 있다. 따라서 테스트 커버리지는 소프트웨어 제품과 테스팅 지침이 설정되었을 때 고려대상에서 존재하는 잠재적 종 오류 사이트 수에 대한 테스팅 하는 동안에 숨겨진 잠재적인 오류 사이트의 수의 비(Ratio)를 정의되어진다[3,4].

2.2. 소프트웨어 신뢰성에 대한 테스트 커버리지

테스트 커버리지를 유한고장 비동질적 포아송 과정 NHPP에 적용 시킬 수 있다. 이러한 적용 모형을 확장된 비동질적 포아송 과정(ENHPP)이라고 부른다. 이와 같은 ENHPP 모형의 오류번호가 갯수는 숨겨진 잠재 오류 사이트의비와 나이있는 오류항의 기대수와의 곱에 비례한다. 이러한 ENHPP 모형은 다음과 같은 가정을 한다[3].

(개정 1) 오류들은 모든 잠재 오류 사이트에 대하여 균일하게(uniformly) 분포되어 있다.
(개정 2) 잠재 오류 사이트가 숨겨졌을 때 사이트에서 오류가 탐색되어 없을 수 있는 확률은 $K(t)$.
(개정 3) 숨리는 효과적으로 즉시 이루어지고 새로운 오류는 발생되지 않는다. (이 가정은 유한 고장 NHPP 도구와 유사하다)
(개정 4) 커버리지는 테스팅 시간에 대하여 연속적인 단조 비 감소함수(Monotonic non- decreasing function)를 따른다.
이러한 모형을 해석학적으로 표시하면 다음과 같이 표현된다.

\[
\frac{dm(t)}{dt} = \frac{a'}{1-c(t)}
\] \hspace{1cm} (2.1)

또한

\[
m(t) = \tilde{a} \int_{0}^{t} K(t) e^{c} dr.
\]

단, \(\tilde{a} \) 는 무한 테스트 시간이 주어졌을 때 탐색될 수 있는 오류의 기대수이고 완전한 오류 탐색 커버리지는 \(K(t) = 1 \)이고 완전 테스트 커버리지는 다음을 만족한다.

\[
\lim_{t \to \infty} c(t) = 1
\] \hspace{1cm} (2.2)

망약 \(K(t) \)가 상수 \(K \)로 가정하면 \(t \)시점에서 탐색 및 오류의 기대 수 \(m(t) \)는 다음과 같이 표현 가능하다.

\[
m(t) = \tilde{a} K c(t)
\] \hspace{1cm} (2.3)

(2.3)식은 \(t \)시점에서 탐색 및 오류의 기대 수는 오류의 총 오류의 기대수와 \(t \)시점에서의 오류 탐색 커버리지의 곱과 같다.

따라서 \(a = \tilde{a} K \)로 하면 탐색 및 오류의 기대 수 \(m(t) \)는 다음과 같이 또 다른 형태로 표현 가능하다.

\[
m(t) = a c(t)
\] \hspace{1cm} (2.4)

이런 결과로 인하여 고장 강도함수(Intensity function) \(\lambda(t) \)을 적용시키면 다음과 같다.

\[
\frac{dm(t)}{dt} = \lambda(t) = ac(t)
\] \hspace{1cm} (2.5)

고장 강도 함수 \(\lambda(t) = [a-m(t)] h(t) \)임이 일으키러

\[
\lambda(t) = |a-m(t)| \frac{e^{c(t)}}{1-c(t)} = [a-m(t)] h(t)
\] \hspace{1cm} (2.6)

그리므로 한 개의 오류 당 오류발생비율인 위험함수(Hazard function) \(h(t) \)는 다음과 같이 유도 된다.

\[
h(t) = \frac{a'/c(t)}{1-c(t)}
\] \hspace{1cm} (2.7)

따라서 이러한 ENHP 모형은 테스트가 진행됨에 따라 각각의 오류가 발생될 수 있는 비율은 시간에 따라 변화하기 때문에 시간에 의존하는 고장 발생 비율이라 고 할 수 있다. 또, 이러한 위험함수에 해당하는 분포는 \(t \)시점에서 커버리지 함수를 평가 할 수 있다.

이러한 ENHP 모형은 (불완전한) 커버리지 함수에 대하여 실제적인 상황(\(c(\infty) < 1 \))을 적용 시킬 수 있다.

결과적으로 조건부 신뢰도(Conditional reliability) \(R(t \mid s) \)는 다음과 같이 알려져 있다[3].

\[
R(t \mid s) = e^{-\int_{s+t}^{t} \lambda(t) dt} = e^{-a[g(s+t)-\alpha(s)]}
\] \hspace{1cm} (2.8)

단, \(t \)는 임무시간(Mission time)이고 \(s \)는 마지막 고장 시간이다.

2.3. 커버리지 함수를 이용한 NHPP 모형(ENHP)

고장 시간 영역 모형에서는 고장 강도 함수 \(\lambda(t) \)에 따라 다른 NHPP 모형이 된다. 따라서 커버리지 함수 \(c(t) \)도 다른 형태로 존재 한다. 결국 \(c(t) \)도 여러 가지 형태들 제시 할 수 있다. 본절에서는 잘 알려진 저수 커버리지 함수와 오형 커버리지 함수를 제조명 한다.

2.3.1 저수 커버리지 함수

잘 알려진 Goel-Ookumoto 모형[9, 10]은 이 분야에서 기본적인 모형이다. 이러한 모형은 저수 커버리지 함수를 이용한 모형 즉, 오류 당 고장 발생 비율이 상수를 가지는 모형이 된다. 이러한 저수 모형을 NHPP로 접근하면 평균값 함수와 강도 함수는 다음과 같이 알려져 있다.

\[
m(t; a, g) = a (1-e^{-gt}) \quad (a > 0, \ g > 0)
\] \hspace{1cm} (2.9)

\[
\lambda(t; a, g) = a ge^{-gt}
\] \hspace{1cm} (2.10)

단, \(a \)는 무한하게 테스트 시간이 주어졌을 때 판찰된 고장의 기대수이고 \(g \)는 오류 당 고장 발생 비율을 의미 한다.

따라서 저수모형에 대한 커버리지 함수 \(c(t) \)수와 위험함수 \(h(t) \)는 다음과 같이 유도 된다.
\[
 c(t) = 1 - e^{-\gamma t} \tag{2.11}
\]

\[
 h(t) = \frac{c'(t)}{1 - c(t)} = g \tag{2.12}
\]

2.3.2 S-형 커버리지 함수
S-형 커버리지 함수 모형\[9, 11\]은 Yamada-Ohba-Osaki 모형으로 알려져 있고 S-형 모형을 NHPP로 접근하면 평균값 함수와 강도 함수는 다음과 같이 알려져 있다.

\[
 m(t|a, g) = a \left[1 - (1 + g t) e^{-s t} \right] (a > 0, g > 0) \tag{2.13}
\]

\[
 \lambda(t|a, g) = a g^2 t e^{-s t} \tag{2.14}
\]

따라서 S-형 모형에 대한 커버리지 함수 \(c(t)\)와 위험 함수 \(h(t)\)는 다음과 같이 유도 된다.

\[
 c(t) = 1 - (1 + g t) e^{-s t} \tag{2.15}
\]

\[
 h(t) = \frac{c'(t)}{1 - c(t)} = \frac{g^2 t}{1 + g t} \tag{2.16}
\]

III. 제안한 Kappa(2) 커버리지 함수

소프트웨어 신뢰성이나 의료정보분야 등 여러 분야에서 널리 사용될 수 있는 분포 중 하나가 3모수 \((\alpha, \beta, \gamma)\) Kappa 분포이다\[5, 6\].

\[
 f_{\text{kappa}(2)}(t) = \frac{\alpha}{\beta} \left(\frac{t}{\beta} \right)^{\alpha - 1} (\alpha + (t/\beta)^\gamma)^{-(\alpha + 1)/\gamma} \tag{3.1}
\]

단, \(t > 0\)를 만족하고 \(\beta (> 0)\)는 최도모수이고 \(\alpha (> 0)\)와 \(\gamma (> 0)\)는 형상모수이다.

로그노말(Lognormal)분포나 감마(Gamma)분포의 누적분포함수가 폐쇄형(Closed form)을 이루지 못하지 만 이 Kappa분포는 폐쇄형을 이루고 있으므로 순서 통계량(Order statistics)의 정보를 설명하는데 편리하다는 장점이 가지고 있다\[5\].

따라서 본 논문에서의 소프트웨어 신뢰성 모형도 임반 순서 통계량에 의존되는 모형이므로 이 분포를 적용하는 것이 합리적이고 3모수 Kappa분포에서 형상모수 \(\gamma = 1\)인 2모수 Kappa분포도 3모수 Kappa 분포의 성질을 그대로 유지하고 있기 때문에 본 논문에서 2모수 Kappa 분포를 적용하고자 한다\[4\]. 2모수 Kappa 분포의 확률밀 도함수와 누적분포함수는 다음과 같다\[6\].

\[
 f_{\text{kappa}(2)}(t) = \alpha/\beta \left(\alpha + (t/\beta)^\gamma \right)^{-(\alpha + 1)/\gamma} \tag{3.2}
\]

\[
 F_{\text{kappa}(2)}(t) = \left(\frac{\alpha}{\alpha + (t/\beta)^\gamma} \right)^{1/\gamma} \tag{3.3}
\]

이러한 Kappa(2) 모형을 NHPP로 접근하면 평균값 함수와 강도 함수는 다음과 같이 표현할 수 있다.

\[
 m(t|a, \alpha, \beta) = a \left(\frac{\alpha/\beta}{(\alpha + (t/\beta)^\gamma)^{1/\gamma}} \right) \tag{3.4}
\]

\[
 \lambda(t|a, \alpha, \beta) = a \frac{\alpha / \beta}{(\alpha + (t/\beta)^\gamma)^{1/\gamma}} \tag{3.5}
\]

단, \(t > 0, \beta > 0, \alpha > 0\).

따라서 Kappa(2) 모형에 대한 커버리지 함수 \(c(t)\)와 위험함수 \(h(t)\)는 다음과 같이 유도 된다.

\[
 c(t) = \left[\frac{\alpha}{\alpha + (t/\beta)^\gamma} \right]^{1/\gamma} \tag{3.6}
\]

\[
 h(t) = \frac{\alpha / \beta}{(\alpha + (t/\beta)^\gamma)^{1/\gamma} - \alpha / \beta} \tag{3.7}
\]

IV. ENHPP 모형에 대한 모수 추정

시간 \((0, t)\)까지 조사하기 위한 시간 점단(Time truncated)모형은 \(n\) 번째까지 고장시점 자료만

\[
 x_k = \sum_{i=1}^{k} t_k \quad (k = 1, 2, \ldots, n; 0 \leq x_1 \leq x_2 \leq \cdots \leq x_n) \tag{4.1}
\]

이러고 하면 데이터 집합 \(D_t = \{n, x_1, x_2, \ldots, x_n; t\}\)와 같이 구성된다. \(n\) 번째까지 고장시점이 관찰된 고장 점단 모형인 경우에 데이터 집합 \(D_{x_n} = \{x_1, x_2, \ldots, x_n\}\)으로 구성된다. 이 시간 점단 모형에서의 우도함수는 다음과 같이 알려져 있다\[1, 3\].

\[
 L(\Theta | D_t) = \left[\prod_{i=1}^{n} \lambda(x_i) \right] \exp (-m(t)) \tag{4.2}
\]

단, \(\Theta\) 은 미지의 모수 집합을 의미하고 우도함수 (4.2)
서부터 t을 x_i으로 대치하면 유사한 형태의 고정 점화 모형의 우도함수가 된다. 본 문헌에서 이러한 최우 추정법(Maximum Likelihood Estimation; MLE)으로 모수 추정을 실시하고자 한다.

유사한 방법으로 (3.4)식과 (3.5)식을 연관하여 2모수 kappa(2) 커버리지 모형에 대한 로그우도함수는 다음과 같이 표현된다[5].

$$\ln L_{kappa(2)}(\theta, \alpha, \beta | D_n)$$
$$= n \ln n + n \ln \frac{\alpha+1}{\beta} \left(\frac{\alpha+1}{\alpha} \sum_{i=1}^{n} \ln (\alpha + x_i/\beta)^{\alpha} \right)$$
$$- n \left(\frac{\alpha+1}{\beta} \frac{\alpha}{\alpha + x_i/\beta} \right)^{\alpha+1}$$

본 연구에서는 $\alpha = 2$인 경우를 고려하면 즉, 형상 모수 $\alpha = 2$ 값은 상수(고정)라고 가정했을 때 최우추정법을 이용하기 위하여 (4.3)식을 α와 β에 대하여 편리한 경우 다음과 같은 식을 유도 할 수 있다.

$$\frac{n}{\alpha} = \left(\frac{2/\beta}{2 + (x_i/\beta)} \right)^{1/2}$$

$$\frac{2n}{\beta} = \frac{3}{2} + \sum_{i=1}^{n} \frac{4}{\beta(2\beta + x_i)} + a \left(\frac{4\beta}{\sqrt{4\beta^2 + x_i^2}} \right)$$

(4.4) 식과 (4.5) 식을 비선형 연립방정식(수치해석적 방법)을 이용하여 풀면 최우추정치 $\hat{\theta}_{MLE}$와 $\hat{\alpha}_{MLE}$의 값을 구할 수 있다.

V. 수치적인 예

이 장에서 실제적인 자료를 가지고 Kappa(2) 커버리지 모형을 분석하고자 한다. 고정자료는 Allen P. Nikora 와 Michael R. Lyu가 이용한 SYS2 자료[12]를 이용하고자 한다. 제시하는 신뢰모형들을 분석하기 위하여 우선자료에 대한 추세 검정이 선행되어야 한다[1, 3]. 추세분석에는 산술평균 검정(Arithmetic mean test)과 라플라스 추세검정(Laplace trend test) 등이 있다.

이 점검을 실시한 결과 <그림 1>에서는 산수평균 점검결과 고정수가 증가함에 따라 산수 평균이 거의 증가 추세를 보이고 있으므로 신뢰성장(Reiability growth)이 되지 않았음을 나타내고 있고 라플라스 추세검정의 결과 도 라플라스 요인(Factor)이 음수로서 감소하기 때문에 역시 신뢰성장(Reiability growth)이 되지 않았음을 나타내고 있다. 따라서 이 자료를 가지고 신뢰성장 모형을 제시하는 것이 유효성을 시사하고 있다[3]. 실제 분석에서의 원래의 자료를 변량변환(Variate transformation) 시킨 고장 간격 데이터(102594×10^{-5} 시간(Second) 단위에서 고장이 86번 일어남)을 이용하였고 <표 1>에 자료가 나열되어 있다.

스포트웨어 신뢰성 모형의 모수 추정는 최우추정법을 이용하였고 비선형 방정식의 계산방법은 수치해석적 기법 방식[13]을 사용하였다. 이러한 계산은 초기 값을 10^{-10}와 1.0을, 허용 한계(Tolerance for width of interval)는 10^{-10}을 주고 수렴 성을 확인하기 위한 반복 횟수는 100번을 C-언어를 이용하여 모수 추정을 수행하였다 Kappa 모형을 포함한 모수의 추정 값들의 결과는 <표 2>에 요약되었다.

모형 선택의 하나의 방법으로 편차자승합(SSE [1,9])을 이용할 수 있는데 이 편차자승합이 작으면 상대적으로 유효적인 모형이 된다. 추정치 자료를 이용하여 제시된 모형들에 대한 편차자승합의 값은 <표 3>에 요약되었다. 이 표에서 Kappa 모형이 기존에 알려진 모형인 S-커버리지 모형이나 지수 커버리지 모형에 비해 상대적으로 유효한 모형으로 나타나고 있다.

예측오류(Prediction error)의 비정상성(Non-stationarity)에 대한 측도는 Kolmogorov 거리(distance)[1,3]로 측정되는데 이 거리가 클수록 상대적으로 비정상성을 내포하고 있다. <그림 2>은 S-Plus 소프트웨어[13]를 이용하여 Kolmogorov 검정에 대한 그림을 보여주고 있고 이 그림에서도 전체적으로 Kappa 모형이 상대적으로 비정상 성 속성이 덜 내포하고 있음을 알 수 있다. <표 4>는 Kolmogorov 거리를 이용한 표에서 모형에 대한 지수점(Bias)을 나타내고 있다. 이 표에서도 Kappa 커버리지 모형의 형태가 상대적으로 비정상성 속성이 덜 내포하고 있음을 알 수 있다.
표 1. 고정 간격 자료

<table>
<thead>
<tr>
<th>모형</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>표본수</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
</tr>
<tr>
<td>균등한</td>
<td>349</td>
<td>350</td>
<td>351</td>
<td>352</td>
<td>353</td>
<td>354</td>
<td>355</td>
<td>356</td>
<td>357</td>
<td>358</td>
<td>359</td>
<td>360</td>
</tr>
<tr>
<td>S-coverage</td>
<td>0.08215</td>
<td>0.082564</td>
<td>0.08543</td>
<td>0.085782</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>exponential coverage</td>
<td>0.08215</td>
<td>0.082564</td>
<td>0.08543</td>
<td>0.085782</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kappa(2) coverage</td>
<td>0.08215</td>
<td>0.082564</td>
<td>0.08543</td>
<td>0.085782</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

표 2. 각 모형의 모수 추정값

<table>
<thead>
<tr>
<th>모델</th>
<th>M.L.E</th>
<th>M.L.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>모형1</td>
<td>0.08215</td>
<td>0.08543</td>
</tr>
<tr>
<td>모형2</td>
<td>0.082564</td>
<td>0.085782</td>
</tr>
<tr>
<td>모형3</td>
<td>0.08215</td>
<td>0.08543</td>
</tr>
<tr>
<td>모형4</td>
<td>0.082564</td>
<td>0.085782</td>
</tr>
</tbody>
</table>

표 3. 모형들에 대한 SSE의 값

<table>
<thead>
<tr>
<th>모델</th>
<th>SSE</th>
<th>SSE</th>
<th>SSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>모형1</td>
<td>7926.23</td>
<td>6057.38</td>
<td>5682.12</td>
</tr>
<tr>
<td>모형2</td>
<td>7926.23</td>
<td>6057.38</td>
<td>5682.12</td>
</tr>
<tr>
<td>모형3</td>
<td>7926.23</td>
<td>6057.38</td>
<td>5682.12</td>
</tr>
<tr>
<td>모형4</td>
<td>7926.23</td>
<td>6057.38</td>
<td>5682.12</td>
</tr>
</tbody>
</table>

VI. 결론

소프트웨어 신뢰성은 개발의 최종단계에 있는 테스트 과정이나 실제 사용단계에 있어서 소프트웨어 내에 존재하는 고장 수나 고장 발생 시간에 의해서 효과적으로 평가할 수 있는 상황으로 그 평가 기술이 중요하게 된다. 따라서 소프트웨어 개발의 테스트 과정이나 실제 사용단계에 있어서 고장 발생 현상을 수리적으로 모형화가 가능하면 평가를 할 수 있다. 테스트 시간이나 혹은 실행 시간에 발생된 고장 수와 고장 발생 시간도 과의 관계를 효용적으로 관리함으로서 소프트웨어 신뢰도를 정량적 수치에 나타낼 수 있다. 이러한 과정을 소프트웨어 성능과 결합시키려고 볼 수 있다[13].

그림 1. 산술통계 값 검정과 라플라스 추세 검정

Fig. 1. Arithmetic mean and Laplace trend test

그림 2. 모형에 대한 Kolmogorov 검정

Fig. 2. Kolmogorov test of each model
表 4. 모형들에 대한 Kolmogorov 거리

<table>
<thead>
<tr>
<th>Model</th>
<th>Kolmogorov distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>exponential coverage Model</td>
<td>0.159593</td>
</tr>
<tr>
<td>S-coverage Model</td>
<td>0.155121</td>
</tr>
<tr>
<td>Kappa(2) coverage Model</td>
<td>0.132452</td>
</tr>
</tbody>
</table>

그림 3. 각 모형에 대한 위험 함수

Fig. 3. Hazard function of each model

그림 4. 각 모형에 대한 커버리지 함수

Fig. 4. Coverage function of each model

본 논문에서는 기존에 존재하는 NHPP 모형에서 테스트 커버리지를 포함하는 모형인 ENHPP 모형에 대하여 연구하였다. 각 점 간 1개당 고장 발생률이 감소추세를 가진 Kappa(2)분포를 이용한 가파 커버리지모형을 제안하였다. 고장 간격 시간으로 구성된 자료를 이용하여 기존의 모형과 가파 모형에 대하여 최우 추정법을 이용하 여 모수 추정을 실시하였다. 소프트웨어 고장분석 자료는 고장수가 비교적 큰 실측 자료(고장수가 86인 Allen P.Nikora와 Michael R.Lyu가 인용한 SYS2 자료를 포함하여 분석하였다. 효율적인 모형 비교를 위한 편차정합성의 결과는 Kappa 커버리지모형이 기존에 잘 알려진 지수 커버리지모형이나 S-커버리지 모형보다 우수함을 보이고 있다. Kappa 모형도 커버리지 모형의 성능이 상위적으로 정상성에 가까운 모형으로 간주 할 수 있다. 분석된 자료에 대한 평가에서도 산술평균 검정과 푸_STOP_플라스 추세 검정을 실시한 결과로 신뢰성장이 되고 있음을 나타내고 있다.

따라서 Kappa 분포를 이용한 ENHPP 모형도 이 분야에서 효율적으로 이용할 수 있는 모형이 될 수 있을 것이다. 양후 이러한 Kappa 분포를 이용한 베이지안적 접근 방법이나 수리적 추정과 검정 부분에 대한 수리적인 접근이 기대된다.

참고문헌

[1] 김희철, 최유순, 박종구, “여려 분포를 이용한 NHPP 소프트웨어 신뢰성장 모형에 관한 연구”, 한국 해양정보통신학회 논문지, 10권1호, pp.7-14, 2006

