Thermomechanical Properties and Shape Memory Effect of Chemically Crosslinked EPDM (Nordel(R) IP)

화학적으로 가교된 EPDM (Nordel(R) IP)의 열적기계적 특성 및 형상기억거동

  • Chang, Young-Wook (Department of Chemical Engineering, Hanyang University) ;
  • Han, Jung-Eun (Department of Chemical Engineering, Hanyang University) ;
  • Kang, Shin-Choon (Department of Chemical Engineering, Hanyang University) ;
  • Cho, Ur-Ryong (Department of Applied Chemical Engineering, University of Technology and Education)
  • 장영욱 (한양대학교 화학공학과) ;
  • 한정은 (한양대학교 화학공학과) ;
  • 강신춘 (한양대학교 화학공학과) ;
  • 조을룡 (한국기술교육대학교 응용화학공학과)
  • Published : 2007.12.31

Abstract

Thermomechanical and shape memory properties of dicumyl peroxide(DCP) cured semicrystalline EPDM($Nordel^{(R)}$ IP) were investigated. From gel content analysis, it can be seen that Nordel can be crosslinked by small amount of DCP and the degree of crosslinking increased with the increase of DCP content. DSC analysis revealed that the melting temperature and degree of crystallinity of the crosslinked rubber decreased with the increase of DCP. Tensile test showed that tensile modulus increased and elongation at break of the rubber decreased with an increase in the degree of cross linking. The chemically crosslinked semi-crystalline EPDM exhibited excellent shape memory behavior, i.e. the sample was easily deformed to have an arbitrary secondary shape above its melting temperature and was fixed well in its deformed state when it is cooled, and then the fixed shape was recovered to its original shape very fast upon heating above its melting temperature.

References

  1. A. Lendlein and S. Kelch, 'Shape Memory Polymers,' Angew. Chem Int Ed, 41, 2034 (2002) https://doi.org/10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M
  2. B. K. Kim, S. Y. Lee, J. S. Lee, S. H. Baek, Y. J. Choi, J. O. Lee, M. Xu, 'Polyurethane Ionomers Having Shape Memory Effects,' Polymer, 39, 2803 (1998) https://doi.org/10.1016/S0032-3861(97)00616-2
  3. B. S. Lee, B. C. Chun, Y. C. Chung, K. I. Sul, J. W. Cho, 'Structure and Thermomechanical Properties of Polyurethane Block Copolymers with Shape Memory Effect,' Macromolecules, 34, 6431 (2001) https://doi.org/10.1021/ma001842l
  4. F. Li, R. C. Larock, 'New Soybean Oil-Styrene-Divinylbenzene Thermosetting Copolymers. Shape Memory Effect,' J. Appl. Polym. Sci., 84, 1533 (2002) https://doi.org/10.1002/app.10493
  5. W. Chen, C. Zhu, X. Gu, 'Thermosetting Polyurethanes with Water-Swollen and Shape Memory Properties,' J. Appl. Polym. Sci., 54, 1504 (2002)
  6. Y.-W. Chang, J. K. Mishra, J. H. Cheong, D. K. Kim, 'Thermomechanical Properties and Shape Memory Effect of Epoxidized Natural Rubber Crosslinked by 3-Amino-1,2,4-triazole,' Polym. Inter., 56, 694 (2007) https://doi.org/10.1002/pi.2203
  7. F. Li, W. Zhu, X. Zhang, C. Zhao, M. Xu, 'Shape Memory Effect of Ethylene-Vinyl Acetate Copolymers,' J. Appl. Polym. Sci., 71, 1063 (1999) https://doi.org/10.1002/(SICI)1097-4628(19990214)71:7<1063::AID-APP4>3.0.CO;2-A
  8. C. Liu, S.B.Chun, P. T. Mather, L. Zheng, E. H. Haley, E. B. Coughlin, 'Chemically Crosslinked Polycyclooctene: Synthesis, Characterization, and Shape Memory Behavior,' Macromolecules, 35, 9868 (2002) https://doi.org/10.1021/ma021141j
  9. A. Lendlein, A. M. Schmidt, R. Langer, 'ABPolymer Networks based on Oligo(e-caprolactone) Segments showing Shape-Memory Properties,' Proc. Natl. Acad. Sci. USA 98(3), 842 (2001)
  10. G. Zhu, G. Liang, Q. Xu, Q. Yu, 'Shape Memory Effects of Radiation Crosslinked Poly(\varepsilon$-caprolactone),' J. Appl. Polym. Sci., 90, 1589 (2003) https://doi.org/10.1002/app.12736
  11. G. M. Zhu, Q. Y. Xu, G. Z. Liang, H. F. Zhou, 'Shape-Memory Behaviors of Sensitizing Radiation Crosslinked Polycaprolactone with Poly functional Poly(ester acrylate),'J. Appl. Polym. Sci., 95, 634 (2005) https://doi.org/10.1002/app.20989
  12. A. Lendlein, A. M. Schmidt, M. Schroeter, R. Langer, 'Shape Memory Polymer Networks from Oligo(\varepsilon$-caprolactone) Dimethacrylates,' J. Polym. Sci. Part B: Polym. Phys., 43, 1369 (2005) https://doi.org/10.1002/pola.20598
  13. A. J. Nijenhuis, D. W. Grijpma and A. J. Pennings, 'Crosslinked Poly(L-lactide) and Poly(\varepsilon$ -caprolactone),' Polymer, 37, 2783 (1996) https://doi.org/10.1016/0032-3861(96)87642-7
  14. C. Han, X. Ran, X. Su, K. Zhang, N. Liu and L. Dong, 'Effect of Peroxide Crosslinking on Thermal and Mechanical Properties of Poly(\varepsilon$-caprolactone),' Polym. Inter. 56, 593 (2007) https://doi.org/10.1002/pi.2156
  15. M. Huskic and A. Sebenik, 'Characterization of Crosslinked Ethylene-Vinyl Acetate Copolymer,' Polym. Inter. 31, 41 (1993) https://doi.org/10.1002/pi.4990310107