Morphology and Mechanical Properties of Polyurethane/Organoclay Nanocomposites

폴리우레탄/유기화 점토 나노복합체의 모폴로지와 기계적 물성

  • Park, Kyu-Nam (Department of Polymer Science & Engineering, Kumoh National Institute of Technology) ;
  • Yoon, Kwan-Han (Department of Polymer Science & Engineering, Kumoh National Institute of Technology) ;
  • Bang, Dae-Suk (Department of Polymer Science & Engineering, Kumoh National Institute of Technology)
  • 박규남 (금오공과대학교 고분자공학과) ;
  • 윤관한 (금오공과대학교 고분자공학과) ;
  • 방대석 (금오공과대학교 고분자공학과)
  • Published : 2007.12.31

Abstract

Polyurethane (PU) was prepared with the compositions of polytetramethylene glycol (PTMG) having two different molecular weight (250, 1000 g/mol). The optimum composition of PTMG 250/1000 was 60/40 based on the mechanical properties. PU/organoclay nanocomposites were prepared with several kinds of organoclay. The mechanical properties of nanocomposite prepared with 93A were considerable. The improvement in tensile strength and modulus for PU/organoclay nanocomposite with the application of ultrasound compared to the PU/organoclay nanocomposite without the application of ultrasound was factors of 1.2, and hardness (shore A type) increased from 90 to 95. The difference in thermal degradation was not observed. The results of transmission electron micrographs and X-ray measurements suggest that the intercalated organoclay in PU matrix was observed.

References

  1. 권봉수, '대구경 Si Wafer 개발 연구', (주)실트론 (1992)
  2. 윤경훈, '일본, 미국, 유럽 태양광 연구개발, 태양전지 생산, 시장활성화 정책', 태양전지연구센터 (2003)
  3. L. Zhu and I. Kao, 'Galerkin-based model analysis on the vibration of wire-slurry system in wafer slicing using a wiresaw', J. Sound. Vibra., 283, 589 (2005) https://doi.org/10.1016/j.jsv.2004.04.018
  4. A. Usuki, M. Kawasumi, Y. Kojima, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigaito, 'Swelling behavior of montmorillonite cation exchanged for \omega$-amino acids by \varepsilon$-caprolactam' J. Mater. Res., 8, 1174 (1993) https://doi.org/10.1557/JMR.1993.1174
  5. A. Usuki, M. Kawasumi, Y. Kojima, A. Okada, Y. Fukushima, T. Kurauchi, et al., 'Synthesis of nylon 6-clay hybrid' J. Mater. Res., 8, 1179 (1993) https://doi.org/10.1557/JMR.1993.1179
  6. M. O. Abdalla, D. Dean, and S. Campbell, 'Viscoelastic and mechanical properties of thermoset PMR-type polyimide-clay nanocomposites' Polymer, 43, 5887 (2002) https://doi.org/10.1016/S0032-3861(02)00498-6
  7. F. Gardebien, A. Gaudel-Siri, J‐L. Bredas, and R. Lazzaroni, 'Molecular dynamics simulations of intercalated poly(\varepsilon$-caprolactone)-montmorillonite clay nanocompoisites' J. Phys. Chem. B, 108, 10678 (2004) https://doi.org/10.1021/jp0493069
  8. A. Somwangthanaroj, E. C. Lee, and M. J. Solomon, 'Early stage quiescent and flow-induced crystallization of intercalated polypropylene nanocomposites by time-resolved light scattering' Macromolecules, 36, 2333 (2003) https://doi.org/10.1021/ma021454e
  9. W. J. Bao, K. H. Kim, W. H. Jo, and Y. H. Park, 'Exfoliated nanocomposites from polyaniline graft copolymer/clay' Macromolecules, 36, 9851 (2004) https://doi.org/10.1021/ma035077x
  10. M. A. Osman, V. Mittal, M. Morbidelli, and U. W. Suter, 'Polyurethane adhesive nanocomposites as gas permeation barrier' Macromolecules, 36, 9851 (2003) https://doi.org/10.1021/ma035077x
  11. J. Xiong, Z. Zheng, H. Jiang, S. Ye, and X. Wang, 'Reinforcement of polyurethane composites with an organically modified montmorillonite' Composites Part A, 38, 132 (2007) https://doi.org/10.1016/j.compositesa.2006.01.014
  12. A. Rehab, A. Akelah, T. Agag, and N. Shalaby, 'Polyurethane-nanocomposite materials via in situ polymerization into organoclay interlayers', Polym. Adv. Technol., 18, 463 (2007) https://doi.org/10.1002/pat.887
  13. W. J. Seo, Y. T. Sung, S. B. Kim, Y. B. Lee, K. H. Choe, S. H. Choe, J. Y. Sung, and W. N. Kim, 'Effects of ultrasound on the synthesis and properties of polyurethane foam/clay nanocomposites', J. Appl. Polym. Sci., 102, 3764 (2006) https://doi.org/10.1002/app.24735