Seismic Modeling for Inhomogeneous Medium

불균질 매질에서 탄성파 모델링

  • Published : 2007.12.28

Abstract

The seismic velocity at the formation varies widely with physical properties in the layers. These features on seismic shot gathers are not capable of reproducing normally by numerical modeling of homogeneous medium, so that we need that of random inhomogeneous medium instead. In this study, we conducted Gaussian autocorrelation function (ACF), exponential autocorrelation function and von Karman autocorrelation function for getting inhomogeneous velocity model and applied a simple geological model. According to the results, von Karman autocorrelation function showed short wavelength to the inhomogeneous velocity medium. For numerical modeling for a gas hydrate, we determined a geological model based on field data set gathered in the East sea. The numerical modeling results showed that the von Karman autocorrelation function could properly describe scattering phenomena in the gas hydrate velocity model which contains an inhomogeneous layer. Besides, bottom-simulating-reflectors and scattered waves which appear at seismic shot gather of the field data showed properly in the inhomogeneous numerical modeling.

References

  1. Alford, R. M., Kelly, K. R., and Boor, D. M. (1974) Accu­racy of finite difference modeling of the acoustic wave equation, Geophysics, 39, p. 834-842 https://doi.org/10.1190/1.1440470
  2. Aki, K., and B. Chouet (1975) Origin of coda waves: Source, attenuation and scattering effects, J. Geophys. Res., 80, p. 3322-3342 https://doi.org/10.1029/JB080i023p03322
  3. Andreassen, K., Hart, E. H. and MacKay, M. (1997) Amplitude versus offset modeling of the bottom sim­ulation reflection associated with submarine gas hydrate, Marine Geology, 137, p. 25-40 https://doi.org/10.1016/S0025-3227(96)00076-X
  4. Frankel, A., and Clayton, R. W. (1986) Finite difference simulations of seismic scattering: Implications for the propagation of short-period seismic waves in the crust and models of crustal heterogeneity, J. Geophys. Res., Vol. 91, p. 6465-6489 https://doi.org/10.1029/JB091iB06p06465
  5. Gibson, B. and Levander, A. (1990) Apparent layering in common-midpoint stacked images of two-dimension­ally heterogeneous targets, Geophysics, 55, p. 1466-­1477 https://doi.org/10.1190/1.1442794
  6. Holbrook, W. S., Hoskins, H., Wood, W. T., Stephen, R. A., Lizarralde, D., and the Leg 164 Scientific Party (1996) Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling, Science, 273, p. 1840-1843 https://doi.org/10.1126/science.273.5283.1840
  7. Jang, S. H., Suh, S. Y., and Go, J. S. (2006) Prestack depth migration for gas hydrate seismic data of the East sea, Korea Society of Economic and Environmental Geol­ogy, Vol. 39, No. 6, p. 711-717
  8. Jo, C.-H., Shin, C., and Suh, J. H. (1996) An optimal 9-­point, finite-difference, frequency-space, 2-D scalar wave extrapolator, Geophysics, Vol. 61, p. 529-537 https://doi.org/10.1190/1.1443979
  9. Kamei R., Hato M., and Matsuoka T. (2005) Random het­erogeneous model with bimodal velocity distribution for Methane Hydrate exploration, Mulli-Tamsa, Vol. 8, No.1, p. 41-49
  10. Kelly K. R., Ward, R. W., Treitel Sven, and Alford, R. M. (1974) Synthetic seismograms: A finite difference approach, Geophysics, 41, p. 2-27 https://doi.org/10.1190/1.1440605
  11. Klimes, L. (2002) Correlation functions of random media, Pure and Applied Geophysics, Vol. 159, p. 1811-1831 https://doi.org/10.1007/s00024-002-8710-2
  12. Korn, M. (1993) Seismic waves in random media, Journal of Applied Geophysics, Vol. 29, p. 247-269 https://doi.org/10.1016/0926-9851(93)90007-L
  13. Kvenvolden (1993) Gas hydrate - geological perspective and global change, Reviews of Geophysics, 31, p. 173-­187 https://doi.org/10.1029/93RG00268
  14. Loewenthal, D., Wang, C. J., and Johnson, O. G. (1991) High order finite difference modeling and reverse time migration, Exploration Geophysics, Vol. 22, p. 533-545 https://doi.org/10.1071/EG991533
  15. Martini E. (2001) Seismic imaging below basalt, Ph. D. thesis, National University of Ireland
  16. Powell, J. A. (1984) On the effect of random timing errors on velocity estimates derived from normal moveout estimates, Geophysics, Vol. 49, p. 1361-1364 https://doi.org/10.1190/1.1441762
  17. Pyrak-Nolte, L. (2002) Seismic imaging of fractured media, 5th International Workshop on the Application of Geophysics in Rock Engineering, Toronto, Canada
  18. Rowe, M. M., and Gettrust, J. F. (1993) Fine structure of methane hydrate-bearing sediments on the Blake Outer Ridge ad determined from deep-tow multi­channel seismic data, J. Geophys. Research, 98, p. 463-473 https://doi.org/10.1029/92JB01706
  19. Sato, H. and Fehler, M. (1998) Seismic Wave Propagation and Scattering in the Heterogeneous Earth, Springer-­Verlag, New York
  20. Shipley, T. H., Houston, M. H., Buffler, R. T., Shaub, F. J., McMilen K. J., Ladd, J. W., and Worzel, J. L. (1979) Seismic evidence for widespread possible gas hydrate horizons continental slopes and rises, AAPG Bull., 63, p. 2204-2213
  21. Shin C. S., and Sohn, H. J. (1998) A frequency space 2-­D scalar wave extrapolator using extended 25 points finite difference operators, Geophysics, Vol. 63, p. 289-296 https://doi.org/10.1190/1.1444323
  22. Stoll, E. D. and Bryan, G. M. (1979) Physical properties of sediments containing gas hydrates, J. Geophys. Res., 84, p. 1629-1634 https://doi.org/10.1029/JB084iB04p01629
  23. Yao, Y., and Xi, X. (2004) Reflected wavefield in random media: a review, J. Geophys. Eng., Vol. 1, p. 147-152 https://doi.org/10.1088/1742-2132/1/2/007
  24. Whalley, E. (1980) Speed of longitudinal sound in clath­rate hydrates, J. Geophys. Res., 85, p. 2539-2542 https://doi.org/10.1029/JB085iB05p02539
  25. Wu R. S., and Aki, K. (1985) Elastic wave scattering by a random medium and the small-scale inhomogene­ities in the lithosphere, J. Geophys. Res., Vol. 90, p. 10261-10273 https://doi.org/10.1029/JB090iB12p10261