Herbicidal Effect of 5-Aminolevulinic Acid, a Biodegradable Photodynamic Substance

생분해성 광활성 물질 5-aminolevulinic acid의 제초활성

  • Chon, Sang-Uk (Callus Co. Ltd., TBI Center, Gwangju Institute of Science and Technology) ;
  • Kim, Young-Min (Donguinara Co. Ltd., Biotechnology Industrialization Center, Dongshin University)
  • 천상욱 (광주과학기술원 창업기술지원센터 (주)캐러스) ;
  • 김영민 (동신대학교 생물자원산업화지원센터 (주)동의나라)
  • Published : 2007.03.30

Abstract

Laboratory and greenhouse experiments were conducted to determine the herbicidal effect of two types of ${\delta}$-aminolevulinic acid (ALA), microbiologically-produced ALA (Bio-ALA) and synthetically produced ALA (Synthetic-ALA), on plant growth and chlorophyll content of Chinese cabbage. ALA effect on early plant growth was greatly concentration dependant, showing significant inhibition at higher concentrations. Both pre- and post-emergence application of ALA exhibited significant degree of photodynamic phytotoxicity. Older plants with many leaves were more tolerant to ALA than younger plants, showing less injury. No significant difference in herbicidal activity of two types of ALA, Bio-ALA and Synthetic-ALA, on plant height and chlorophyll content of Chinese cabbage was observed. However, residual biological activity and physico-chemical properties of Synthetic-ALA were more stable than those of Bio-ALA. Our results suggest that ALA had herbicidal potential with both pre- and post-emergence application, and that the chemical may be a valuable mean of eco-friendly weed control based on natural microbial substance.

References

  1. Choi, C., B. S. Hong, H. C. Sung, H. S. Lee and J. H. Kim (1999) Optimization of extracellular 5-aminolevulinic acid production from Escherichia coli transformed with ALA synthase gene for Bradyrhizobium japonicum. Biotech. Letters. 21:551-554 https://doi.org/10.1023/A:1005520007230
  2. Chon S. U. (2003) Herbicidal activity of &aminolevulinic acid on several plants as affected by application methods. Korean J. Crop Sci. 48:50-55
  3. Hotta, Y. and K. Watanabe (1999) Plant growthregulating activities of 5-aminolevulinic acid, Syo kubutu-no-Kagaku-Tyousetu (Chem. Regul. Plants). 34:85-96
  4. Menon, I. A., S. D. Persad and H. F. Haberman (1989) A comparison of the phytotoxicity of protoporphyrin, coproporphyrin, and uroporphyrin using a cellular system in vitro. Clin. Biochem. 22:197-200 https://doi.org/10.1016/S0009-9120(89)80077-3
  5. Rebeiz, C. A., J. A. Juvik, and C. C. Rebeiz (1988b) Photodynamic insecticides I. Concept and phenomenology. Pesticide Biochem. Physiol. 30:11-27 https://doi.org/10.1016/0048-3575(88)90055-7
  6. Rebeiz, C. A., S. M. Wu, and M. Kuhadje, H. Daniel and E.J. Perkins (1983) Chlorophyll a biosynthetic routes and chlorophyll a chemical heterogeneity. Mol. Cell. Biochem. 58:97 -125
  7. Hopf, F. R. and D. G. Whitten (1978) Chemical transformations involving photoexcited porphyrins and metalloporphyrins. In D. Dolphin (Ed.), The Porphyrins. Vol. 2. Academic Press. NY. 1978. pp.191-195
  8. Lichtenthaler, H. K. (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology 148:350-382 https://doi.org/10.1016/0076-6879(87)48036-1
  9. Tripathy, B. C. and N. Chakraborty (1991) 5-aminolevulinic acid induced photodynamic damage of the photosynthetic electron transport chain of cucumber (Cucumis sativus L.) cotyledons. Plant Physiol. 96:761 -767 https://doi.org/10.1104/pp.96.3.761
  10. Askira, Y., B. Rubin and H. D. Rabinowitch (1991) Differential response to the herbicidal activity of $\delta$-aminolevulinic acid in plants with high and low SOD activity. Free Rad. Res. Comms. 12-13:837 -843
  11. Duke, S. O., J. Lydon, J. M. Becerril, T. D. Sherman, L. P. Lehnen and H. Matsumoto (1991) Protoporphy-rinogen oxidase-inhibiting herbicides. Weed Sci. 39:465 -473
  12. Hotta, Y., T. Tanaka, H. Takaoka, Y. Takeuchi and M. Konnai (1997) Promotive effect of 5-aminolevulinic acid on the yield of several crops. Plant Growth Regulation 22:109-114 https://doi.org/10.1023/A:1005883930727
  13. Schuimaker, J. J., P. Baas, L. M. van Leengoed, F.W. van der Meulen, W. M Star and N. van Zandwijk (1999) Photodynamic therapy: a promising new modality for treatment of cancer. J. Photochem. Photobiol. 34:3 -12
  14. Beale, S. I. (1978) $\delta$-aminolevulinic acid in plants: its biosynthesis, regulation, and role in plastid development. Ann. Rev. Plant Physiol. 29:95 -120 https://doi.org/10.1146/annurev.pp.29.060178.000523
  15. Scalla, R. and M. Matringe (1994) Inhibitors of protoporphyrinogen oxidase as herbicides: Diphenyl ethers and related photobleaching molecules. Rev. Weed Sci. 6: 103 -132
  16. Avissar, Y. J., J. G. Ormerod and S. I. Beale (1989) Distribution of 5-aminolevulinic acid acid biosynthetic pathways among phototrophic bacterial groups. Arch. Microbiol. 151:513 -519 https://doi.org/10.1007/BF00454867
  17. Rebeiz, C. A., A. Motazer-Zouhoor, J. M Mayasich, B. C. Tripathy, S. M. Wu and C. C. Bebiz (1988a) Photodynamic herbicides. Recent developments and molecular basis of selectivity. Crit. Rev. Plant Sci. 6:385-486 https://doi.org/10.1080/07352688809382256
  18. Sasaki, K., T. Tanaka and S. Nagai (1998) Use of photosynthetic bacteria for the production of SCP and chemicals. pp.247 -291. In Bioconversion of Waste Materials to Industrial Products, 2nd ed., (ed. Martin, A. M), Blackie Academic and Professional
  19. Beale, S. I. and P. A. Castelfranco (1974) The biosynthesis of $\delta$-aminolevulinic acid in higher plants. II. Formation of $^{14}C-\delta$-aminolevulinic acid from labeled precursors in greening plant tissues. Plant Physiol. 53:297 -303 https://doi.org/10.1104/pp.53.2.297
  20. Weinstein, J. D. and S. I. Beale (1983) Separate physiological roles and sub-cellular compartments for two tetrapyrrole biosynthetic pathways in Euglena gracilis. J. Biol. Chem. 258:6799-6807
  21. Wettstein, D. v., S. Gough and C. G. Kannangara (1995) Chlorophyll biosynthesis. Plant Cell 7:1039-1057 https://doi.org/10.1105/tpc.7.7.1039
  22. Kuramochi, H., M. Konnai, T. Tanaka and Y. Horta. (1997) Method for improving plant salt tolerance. US patent 5661111
  23. Mock, H. P., U. Keetman and B. Grimm (2002) Photosensitising tetrapyrroles induce antioxidative and pathogen defense responses in plants. pp.155 -170. In Oxidative Stress in Plants, (eds. Inze, D. and M van Montagu), Taylor and Francis, London, NY
  24. Rebeiz, C. A., A. Montazer-Zouhoor, H. J. Jopen and S. M Wu. (1984) Photodynamic herbicides: Concept and phenomenology. Enzyme Microb. Technol. 6:390-401 https://doi.org/10.1016/0141-0229(84)90012-7
  25. Boger, P. and K. Wakabayashi (1999) Peroxidizing herbicides. Springer, Berlin, Heidelberg
  26. Lermontova, I. and B. Grimm (2000) Overexpression of plastic protoporphyrinogen IX oxidase leads to resistance to the diphenyl-ether herbicide acifluorfen. Plant Physiol. 122:75 -83 https://doi.org/10.1104/pp.122.1.75
  27. Rebeiz, C. A., K. N. Reddy and U. B. Nandilhalli (1990) Tetrapyrrole-dependent photodynamic herbicide. Photochem. Photobiol. 52: 1099 -1117 https://doi.org/10.1111/j.1751-1097.1990.tb08451.x
  28. Sasaki, K., S. Ikeda, Y. Nishizawa and M. Hayashi. (1987) Production of $\delta$-aminolevulinic acid from photosynthetic bacteria. J. Ferment. Technol. 65:511-515 https://doi.org/10.1016/0385-6380(87)90109-9
  29. Kuk, Y. I., G. S. Lim, S. U. Chon, T. E. Hwang and J. O. Guh (2003) Effect of 5-aminolevulinic acid on growth and Inhibition of various plant species. Kor. J. Crop Sci. 48:127-133
  30. Beale, S. I. and J. D. Weinstein (1990) Tetrapyrrole metabolism in photosynthetic organisms. In Biosynthesis of Heme and Chlorophylls (Ed.), Dailey, H. A. pp.287 - 391. McGraw-hill, New York
  31. Papenbrock, J. and B. Grimm (2001) Regulatory network of tetrapyrrole biosynthesis - studies of intracellular signaling involvedin metabolicand developmental control of plastids. Planta 213:667-681 https://doi.org/10.1007/s004250100593