DOI QR코드

DOI QR Code

성숙에 따른 뜰보리수(Elaeagnus multiflora Thunb.) 열수추출물의 항산화 활성과 Xanthine Oxidase 저해효과

Antioxidant Activities and Xanthine Oxidase Inhibitory Effects of Hot-water Extracts from Fruits of Elaeagnus multiflora Thunb. in Maturity

  • 윤경영 (영남대학교 식품영양학과) ;
  • 홍주연 (대구한의대학교 한방식품조리영양학부) ;
  • 남학식 (대구한의대학교 한방식품조리영양학부) ;
  • 문용선 (영남대학교 원예학과) ;
  • 신승렬 (대구한의대학교 한방식품조리영양학부)
  • Yoon, Kyung-Young (Dept. of Food and Nutrition, Yeungnam University) ;
  • Hong, Ju-Yeon (Faculty of Herbal Cuisine and Nutrition, Deagu Hanny University) ;
  • Nam, Hak-Sik (Faculty of Herbal Cuisine and Nutrition, Deagu Hanny University) ;
  • Moon, Yong-Sun (Dept. of Horticulture, Yeungnam University) ;
  • Shin, Seung-Ryeul (Faculty of Herbal Cuisine and Nutrition, Deagu Hanny University)
  • 발행 : 2007.01.31

초록

본 연구는 여러 가지 생리기능성에 비해 식품 및 약제로써의 이용성이 낮은 뜰보리수의 이용성을 향상시키기 위한 기초자료를 제공하고자 성숙단계별로 뜰보리수를 채취하여 이들 열수추출물의 항산화성 및 xanthine oxidase저해활성을 측정하였다. 추출물의 농도가 높아질수록 추출물의 전자공여능은 증가하였으며, 미숙 뜰보리수 추출물이 완숙 및 과숙 뜰보리수 추출물에 비해 높은 전자공여 효과를 가졌다. 100 ${\mu}g/mL$에서 미숙, 완숙 및 과숙 뜰보리수 열수추출물의 SOD 유사활성은 각각 9.7%, 1.0% 및 0.6%를 나타내었으며, 1,000 ${\mu}g/mL$에서는 미숙, 완숙 및 과숙 뜰보리수 추출물의 SOD 유사활성이 각각 32.8%, 11.2% 및 5.0%를 나타내어 미숙 뜰보리수 추출물이 완숙 및 과숙 뜰보리수 추출물에 비해 3$\sim$10배 높게 나타났다. 또한 추출물의 농도가 증가할 수록 SOD유사활성이 증가하였다. 뜰보리수 추출물의 아질산염 소거능은 pH 1.2와 pH 3.0 및 100, 300 및 500 ${\mu}g/mL$의 농도에서 미숙>완숙>과숙의 순을 나타내었다. 반면, 1,000 ${\mu}g/mL$ 농도에서는 완숙 및 과숙 뜰보리수 추출물의 아질산염 소거능이 크게 증가하여 미숙 뜰보리수 추출물의 아질산염 소거능과 비슷한 효과를 나타내었다. 뜰보리수 열수추출물의 xanthine oxidase 저해효과는 추출물을 1,000 ${\mu}g/mL$ 농도로 첨가하였을 때 미숙, 완숙 및 과숙 뜰보리수 각각 30.0%, 28.2%, 18.2%로 측정되었으며, 뜰보리수 추출물의 농도가 증가할수록 xanthine oxidase의 저해효과가 높았다.보와 가집의 서문에서 공통적으로 제시하는 것은 '고악회복'이다. 느리지만 조화롭고 바른음악을 지향하는 것이 19세기 문인지식인들과 음악가들이 지향하는 궁극의 목표임을 확인하였다.생활이 부가적으로 더 표현된 점이 다르다. 표현 방법은 유명씨 작품의 전대 선례에서 점차 후대의 선례를 더 많이 수용하는 방향으로 바뀌며 문장 형태에서는 명령문, 명령문이 가장 많이 사용된다.재로 이용될 수 있을 것으로 사료된다.0.97ppm,\;15.19{\pm}1.66ppm,\;21.20{\pm}1.88ppm,\;15.71{\pm}0.91ppm,\;55.48{\pm}2.42ppm,\;52.12{\pm}2.44ppm,\;23.80{\pm}1.98ppm$ 그리고 $11.14{\pm}0.51ppm$인 것으로 나타났다(비타민 C의 $SC_{50}$ 값:$9.61{\pm}0.93ppm$). 특히 마테 추출물과 솔잎 추출물은 총 페놀 함량이 높으면서 DPPH 라디칼과 superoxide anion 라디칼을 동시에 효율적으로 포착하는 효능을 지니고 있는 것으로 나타났다. 결론적으로 마테와 솔잎의 상업적인 추출물은 기능성 항산화제로서 유용한 소재로 사용 가능 할 것으로 사료된다.트폴리오보다 약 5배정도의 높은 1개월 평균초과수익률을 실현하였고, 반전거래전략의 유용성을 충분히 발휘하기 위하여 장단기의 투자기간을 설정할 경우에 6개월에서 36개월로 이동함에 따라 6개월부터 24개월까지는 초과수익률이 상승하지만, 이후로는 감소하므로, 반전거래전략을 활용하는 경우 주식투자기간은 24개월이하의 중단기가 적합함을 발견하였다. 이상의 행태적 측면과 투자성과측면의 실증결과를 통하여 한국주식시장에 있어서 시장수익률을 평균적으로 초과할 수 있는 거래전략은 존재하므로 이러한 전략을 개발

참고문헌

  1. Ames BN. 1970. Identification of environmental chemicals causing mutation and cancer. Science 204: 589-592
  2. Hammond B, Kontos A, Hess ML. 1985. Oxygen radicals in the adult respiratory distress syndrome, in myocardial ischemia and reperfusion injury, and in cerebral vascular damage. Can J Physion Pharmacol 63: 173-187 https://doi.org/10.1139/y85-034
  3. Shin DH. 1997. The study course and movement of natural antioxidants. Food Sci Industry 30: 14-21
  4. Pratt DE. 1992. Natural antioxidants from plant materials. In Phenolic compounds in food and their effects on health (II). Huang MT, Ho ST, Lee CY, eds. Am Chem Soc, Washington DC. p 54-60
  5. Ames BN, Cahcart R, Schwiers E, Hochstein P. 1981. Uric acid provides an antioxidant defense in humans against oxidant and radical-caused aging and cancer. Proc Natl Acad Sci USA 78: 6858-6862 https://doi.org/10.1073/pnas.78.11.6858
  6. Tsuda T, Watanabw M, Ohshima K, Norinobu S, Choi SW, Kawakishi S, Osawa T. 1994. Antioxidative activity of the anthocyanin pigments cyanidin 3-O-${\beta}$-D-glucoside and cyanidin. J Agric Food Chem 42: 2407-2410 https://doi.org/10.1021/jf00047a009
  7. Brannen AL. 1975. Toxicology and biochemistry of butyrated hydroxy toluene and bytyrated hydroxy anisole. J Am Oil Chem Soc 52: 59-63 https://doi.org/10.1007/BF02901825
  8. Halliwell B, Hoult RJ, Blake DR. 1988. Oxidants, inflammation, and anti-imflammatory drugs. FASEB J 2: 2867-2870 https://doi.org/10.1096/fasebj.2.13.2844616
  9. Hwang JY, Ham JW, Nam SH. 2004. The antioxidant activity of Maesil (Prunus mume). Korean J Food Sci Technol 36: 461-464
  10. Cha WS, Shin HR, Park JH, Oh SL, Lee WY, Chun SS, Choo JW, Cho YJ. 2004. Antioxidant activity of phenol compounds from mulberry fruits. Korean J Food Preserv 11: 383-387
  11. Moon JS, KimSJ, Park YM, Hwang IS, Kim EH, Park JW, Park IB, Kim SW, Kang SG, Park YK, Jung ST. 2004. Activities of antioxidation and alcohol dehydrogenase inhibition of methanol extracts from some medicinal herbs. Korean J Food Preserv 11: 201-206
  12. Yu MH, Im G, Lee HJ, Ji YJ, Lee IS. 2006. Components and their antioxidative activities of methanol extracts from sarcocarp and seed of Zizyphus jujuba var. inermis Rehder. Korean J Food Sci Technol 38: 128-134
  13. Othman A, Ismail A, Ghani NA, Adenan I. 2007. Antioxidant capacity and phenolic content of cocoa beans. Food Chem 100: 1523-1530 https://doi.org/10.1016/j.foodchem.2005.12.021
  14. Kuda T, Hishi T, Maekawa S. 2006. Antioxidant properties of dried product of 'haba-nori', edible brown alga, Petalonia binghamiae (J. Agaradh) Vinogradova. Food Chem 98: 545-550 https://doi.org/10.1016/j.foodchem.2005.06.023
  15. Sakanaka S, Tachibana Y, Okada Y. 2005. Preparation and antioxidant properties of extracts of Japanese persimmon leaf tea (kakinoha-cha). Food Chem 89: 569-575 https://doi.org/10.1016/j.foodchem.2004.03.013
  16. Rao LJM, Borse RBB, Raghavan B. 2007. Antioxidant and radical-scavenging carbazole alkaloids from the oleoresin of curry leaf (Murraya koenigii Spreng.). Food Chem 100: 742-747 https://doi.org/10.1016/j.foodchem.2005.10.033
  17. 조무생. 1989. 원색한국수목도감. 아카데미, 서울. p 372
  18. 고경식. 1991. 한국식물검색도감. 아카데미, 서울. p 224
  19. 이창복. 1980. 대한식물도감. 향문사, 서울. p 198
  20. Kim NW, Joo EY, Kim SL. 2003. Analysis on the components of the fruit of Elaeagnus muliflora Thunb. Korean J Food Preserv 10: 534-539
  21. Hong JY, Nam HS, Lee YS, Yoon KY, Kim NW, Shin SR. 2006. Study on the antioxidant of extracts from the fruit of Elaeagnus muliflora Thunb. Korean J Food Preserv 13: 413-419
  22. Blois ML. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 1199-1224 https://doi.org/10.1038/1811199a0
  23. Marklund S, Marklund G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47: 469-474 https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  24. Kato H, Lee IE, Chuyen NV, Kim SB, Hayase F. 1987. Inhibitory of nitrosamine formation by nondilyzable melanoidins. Agric Biol Chem 51: 1333-1338 https://doi.org/10.1271/bbb1961.51.1333
  25. Stirpe F, Della Corte E. 1969. The regulation of rat liver xanthine oxidase. Conversion in vitro of the enzyme activity from dehydrogenase (type D) to oxidase (type O). J Biol Chem 244: 3855-3863
  26. Lee YS, Joo EY, Kim NW. 2005. Antioxidant activity of extracts from the Lespedeza bicolor. Korean J Food Preserv 12: 75-79
  27. Kang YH, Park YK, Lee GD. 1996. The nitrite scavenging and electron donating ability of phenolic compounds. Korean J Food Sci Technol 28: 232-239
  28. Tsai SY, Huang SJ, Mau JL. 2006. Antioxidant properties of hot-water extracts from Agrocybe cylindracea. Food Chem 98: 670-677 https://doi.org/10.1016/j.foodchem.2005.07.003
  29. Abdille MdH, Singh RP, Jayaprakasha GK, Jena BS. 2005. Antioxidant activity of the extracts from Dillenia indica fruits. Food Chem 90: 891-89 https://doi.org/10.1016/j.foodchem.2004.09.002
  30. 한대석, 김석중. 1994. SOD유사활성물질과 기능성식품의 개발. 식품기술 7: 41-49
  31. Shin SR, Hong JY, Nam HS, Yoon KY, Kim KW. 2006. Anti-oxidative effects of extracts of Korean herbal materials. J Korean Soc Food Sci Nutr 35: 187-191 https://doi.org/10.3746/jkfn.2006.35.2.187
  32. Peter FS. 1975. The toxicology of nitrate, nitrite and N-nitrocompounds. J Sci Food Agric 26: 1761-1769 https://doi.org/10.1002/jsfa.2740261119
  33. Fiddler W, Pensabene JW, Piotrowski EG, Doerr RC, Wasserman AE. 1973. Use of sodium ascorbate or erythrobate to inhibit formation of N-nitrosodimethylamine in frankurters. J Food Sci 38: 1084-1091 https://doi.org/10.1111/j.1365-2621.1973.tb02157.x
  34. Chiang HC, Lo YJ, Lu Fj. 1994. Xanthine oxidaseinhibitions from leaves of Alsophila spinulose (HOOK) Tryon. J Enzyme Inhibitions 8: 61-71 https://doi.org/10.3109/14756369409040777
  35. Ferraz Filha ZS, Vitolo IF, Fietto LG, Lombardi JA, Saude-Guimaraes DA. 2006. Xanthine oxidase inhibitory activity of Lychnophora species from Brazil ('Arnica'). J Ethnophamacology 107: 79-82 https://doi.org/10.1016/j.jep.2006.02.011
  36. Moon SH, Lee MK, Chae KS. 2001. Inhibitory effects of the solvent fraction from persimmon leaves on xanthine oxidase activity. Korean J Food Nutr 14: 120-125
  37. Ra KS, Chung SH, Suh HJ, Son JY, Lee HK. 1998. Inhibitor of xanthine oxidase from onion skin. Korean J Food Sci Technol 30: 697-701
  38. An BJ, Bae MJ, Choi C. 1996. Inhibitory effects of flavan-3-ols isolated from Oolong tea on xanthine oxidase. Korean J Food Sci Technol 28: 1084-1088

피인용 문헌

  1. Antioxidant Activity and in vitro for Anticancer Effects of Manufactured Fermented Mulberry Leaf Tea vol.39, pp.6, 2010, https://doi.org/10.3746/jkfn.2010.39.6.796
  2. Anti-aging Effects of Solvent Fraction from Agrimonia pilosa L. Extracts vol.55, pp.1, 2012, https://doi.org/10.3839/jabc.2011.056
  3. Antioxidant Activities of Bamboo (Sasa Borealis) Leaf Extract according to Extraction Solvent vol.38, pp.12, 2009, https://doi.org/10.3746/jkfn.2009.38.12.1640
  4. Quality and antioxidant charactistics of Elaeagnus multiflora wine through the thermal processing of juice vol.21, pp.2, 2014, https://doi.org/10.11002/kjfp.2014.21.2.206
  5. Antioxidant activity and inhibition activity against α-amylase and α-glucosidase of Smilax China L. vol.21, pp.2, 2014, https://doi.org/10.11002/kjfp.2014.21.2.254