Structural and Field-emissive Properties of Carbon Nanotubes Produced by ICP-CVD: Effects of Substrate-Biasing

ICP-CVD 방법으로 성장된 탄소 나노튜브의 구조적 특성 및 전계방출 특성: 기판전압 인가 효과

  • 박창균 (한양대 전자전기제어계측공학과) ;
  • 김종필 (한양대 전자전기제어계측공학과) ;
  • 윤성준 (한양대 전자전기제어계측공학과) ;
  • 박진석 (한양대 전자컴퓨터공학부)
  • Published : 2007.01.01

Abstract

Carbon nanotubes (CNTs) arc grown on Ni catalysts employing an inductively-coupled plasma chemical vapor deposition (ICP-CVD) method. The structural and field-emissive properties of the CNTs grown are characterized in terms of the substrate-bias applied. Characterization using the various techniques, such as field-omission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), Auger spectroscopy (AES), and Raman spectroscopy, shows that the structural properties of the CNTs, including their physical dimensions and crystal qualities, as well as the nature of vertical growth, are strongly dependent upon the application of substrate bias during CNT growth. It is for the first time observed that the provailing growth mechanism of CNTs, which is either due to tip-driven growth or based-on-catalyst growth, may be influenced by substrate biasing. It is also seen that negatively substrate-biasing would promote the vertical-alignment of the CNTs grown, compared to positively substrate-biasing. However, the CNTs grown under the positively-biased condition display a higher electron-emission capability than those grown under the negatively-biased condition or without any bias applied.

References

  1. J M. Bonard, M. Croci, C. Klinke, R. Kurt, O. Noury, and N. Weiss, 'Carbon nanotube films as electron field emitters,' Carbon, vol. 40, pp. 1715-1728, 2002 https://doi.org/10.1016/S0008-6223(02)00011-8
  2. V. N. Popov, 'Carbon Nanotubes: properties and application', Mater. Sci. and Eng., R 43, pp. 61-102, 2004 https://doi.org/10.1016/j.mser.2003.10.001
  3. H. Dai, 'Carbon nanotubes: opportunities and challenges', Surface Science, vol. 500, pp. 218-241, 2002 https://doi.org/10.1016/S0039-6028(01)01558-8
  4. S. K. Smart, A. I. Cassady, G. Q. Lu, and D. J. Martin, 'The biocompatibility of carbon nanotubes', Science, vol. 500, pp. 218-241, 2002
  5. J. Wang, 'Carbon-Nanotube Based Electrochemical Biosensors: A Review', Electroanalysis, vol. 17, pp. 7-14, 2005 https://doi.org/10.1002/elan.200403113
  6. W. J. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Arnaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, I. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. T. Binh, 'Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,' Diamond Relat. Mater., vol. 12, pp. 422-428, 2003 https://doi.org/10.1016/S0925-9635(02)00292-3
  7. W. I. Milne, K. B. K. Teo, G. A. J. Amaratunga, R. Lacerda, P. Legagneux, G. Pirio, V. Sernet, and V. T. Binh, 'Aligned carbon nanotubes/fibers for applications in vacuum microwave devices', Current Appl. Phys., vol. 4, 513-517, 2004 https://doi.org/10.1016/j.cap.2004.02.005
  8. Y. B. Zhang, S. P. Lau, L. Huang, and M. Tanemura, 'Carbon nanotubes synthesized by biased thermal chemical vapor deposition as an electron source in an x-ray tube', Appl, Phys. Lett., vol. 86, 123115, 2005 https://doi.org/10.1063/1.1891299
  9. G. N. Fursey, 'Field emission in vacuum microelectronics', Appl, Surf. Sci., vol. 215, pp. 113-134, 2003 https://doi.org/10.1016/S0169-4332(03)00315-5
  10. Y. A vigal and R. Kalish, 'Growth of aligned carbon nanotubes by biasing during growth,' Appl. Phys. Lett., vol. 78, pp. 2291-2293, 2001 https://doi.org/10.1063/1.1365409
  11. Q. Yang, C. Xiao, W. Chen, A. K. Singh, T. Asai, and A. Hirose, 'Growth mechanism and orientation control of well-aligned carbon nanotubes,' Diamond Relat. Mater., vol. 12, pp. 1482-1487, 2003 https://doi.org/10.1016/S0925-9635(03)00178-X
  12. M. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson, and W. I. Milne, 'Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition,' J. Appl. Phys., vol. 90, pp. 5308-5317, 2001 https://doi.org/10.1063/1.1410322
  13. Y. Chen, D. T. Shaw, and L. Guo, 'Field emission of different oriented carbon nanotubes,' Appl. Phys. Lett., vol. 76, pp. 2469-2471, 2000 https://doi.org/10.1063/1.126379
  14. K. S. Kim, H. J. Ryu, G. E. lang, 'Vertical growth of multi-walled carbon nanotubes by bias-assisted ICPHFCVD and their field emission properties,' Diamond Relat. Mater., vol. 12, pp. 1717-1722, 2003 https://doi.org/10.1016/S0925-9635(03)00270-X
  15. C. L. Tsai and C. F. Chen, 'Characterization of bias-controlled carbon nanotubes,' Diamond Relat. Mater., vol. 12, pp. 1615-1620, 2003 https://doi.org/10.1016/S0925-9635(03)00247-4
  16. L. Nilsson, O. Groening, C. Emrnenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J. M. Bonard, and K. Kern, 'Scanning field emission from patterned carbon nanotubes films,' Appl, Phys. Lett., vol. 76, pp. 2071-2073, 2000 https://doi.org/10.1063/1.126258
  17. Y. T. lang, J. H. Ahn, Y. H. Lee, and B. K. Ju, 'Effect of NH3 and thickness of catalyst on growth of carbon nanotubes using thermal chemical vapor deposition,' Chern. Phys. Lett., vol. 372, pp, 745-749, 2003 https://doi.org/10.1016/S0009-2614(03)00501-3
  18. S. H. Seo, T. H. Lee, Y. D. Kim, C. K. Park, and J. S. Park, 'Electron-emission from nano- and micro-crystalline diamond films: the effects of nitrogen and oxygen additives,' Thin Solid Films, vol. 447, pp. 212-216, 2003 https://doi.org/10.1016/S0040-6090(03)01059-9
  19. Y. T. Feng, S. Z. Deng, J. Chen, and N. S. Xu, 'Effect of carbon nanotube structural parameters on field emission properties,' Ultramicroscopy, vol. 95, pp. 93-97, 2003 https://doi.org/10.1016/S0304-3991(02)00302-9
  20. E. F. Kukovitsky, S. G. L'vov, N. A. Sainov, V. A. Shustov, and L. A. Chemozatonskii, 'Correlation between metal catalyst particle size and carbon nanotube growth,' Chern. Phys. Lett., vol. 355, pp. 497-503, 2002 https://doi.org/10.1016/S0009-2614(02)00283-X
  21. T. Y. Kim, K. R. Lee, K. Y. Eun. and K. H. Oh, 'Carbon nanotube growth enhanced by nitrogen incorporation,' Chern. Phys, Lett., vol. 372, pp. 603-607, 2003 https://doi.org/10.1016/S0009-2614(03)00465-2
  22. M. Tanemura, K. Iwata, K. Takahashi, Y. Fujimoto, F. Okuyama, H. Sugie, and V. Filip, 'Growth of aligned carbon nanotubes by plasma-enhanced chemical vapor deposition: Optimization of growth parameters,' J. Appl, Phys., vol. 90, pp. 1529-1533, 2001 https://doi.org/10.1063/1.1382848
  23. R. T. K. Baker, 'Catalytic growth of carbon filaments,' Carbon, vol. 27, pp, 315-323, 1989 https://doi.org/10.1016/0008-6223(89)90062-6
  24. M. Sveningsson, R. E. Morjan, O. A. Nerushev, Y. Sato, J. Backstrom, E. E. B. Campbell, and F. Rohmund, 'Raman spectroscopy and field-emission properties of CVD-grown carbon nanotube films,' Appl, Phys., vol. A-73, pp. 409-418, 2001
  25. M. Hirakawa, S. Sonoda, C. Tanaka, H. Murakami, and H. Yamakawa, 'Electron emission properties of carbon nanotubes,' Appl. Surf. Sci., vol. 169, pp. 662-665, 2001 https://doi.org/10.1016/S0169-4332(00)00808-4