Alliinase 첨가에 의한 열처리 마늘로부터 생성된 함황 화합물의 특성

Characteristics of Thiosulfinates and Volatile Sulfur Compounds from Blanched Garlic Reacted with Alliinase

  • 발행 : 2007.12.01

초록

마늘의 주요 향기성분 및 생리활성을 나타내는 것으로 알려진 함황 화합물의 생성을 조절하기 위한 방법을 개발하고자 하였다. 이를 위하여 열처리에 의하여 마늘 중의 효소를 완전히 실활 시킨 마늘펄프에 마늘로부터 추출한 alliinase를 첨가하여 첨가량 및 반응시간에 따른 thiosulfinates 및 휘발성 향기성분의 함량 변화를 측정하였다. HPLC 및 LC/MS/MS를 이용하여 생마늘 중의 thiosulfinates를 분리, 확인한 결과 8종의 thiosulfinates를 확인하였다. Allicin은 전체 thiosulfinates함량의 약 60%를 차지하는 것으로 나타났다. 마늘로부터 추출한 alliinase를 열처리 마늘펄프에 각각 100, 200, 300 및 400 unit를 첨가하여 5, 10 및 15분씩 각각 반응시킨 결과 효소첨가량 및 반응시간의 증가와 함께 thiosulfinates 함량도 증가하였다. 100, 200, 300 및 400 unit의 alliinase를 첨가하여 15분간 반응시킨 결과 총 thiosulfinates는 생마늘(대조구)에 비하여 각각 37, 68, 77 및 80%가 생성되는 것으로 나타났다. GC/MSD를 이용하여 대조구 및 효소를 첨가하여 반응시킨 시료의 휘발성 향기성분을 분석한 결과 36개의 피크를 분리하였고, 이중 28개 피크에 대하여 확인 할 수 있었다. 확인된 28개의 피크 중 23개 피크가 함황 화합물이었다. Alliinase를 100, 200, 300 및 400 unit씩 첨가하여 15분간 반응시킨 시료에 대하여 휘발성 향기성분을 분석한 결과 대조구에 비하여 각각 25, 36, 66 및 76%가 생성되는 것으로 나타났다. 이상의 결과를 종합해 볼 때, 열처리한 마늘에 alliinase를 첨가하여 반응시키면 반응조건에 따라 마늘 중의 주요생리활성 물질 및 휘발성 향기성분인 thiosulfinates와 휘발성 함황 화합물의 생성을 30-80%까지 조절할 수 있을 것으로 사료된다.

참고문헌

  1. Kwon SK. Organosulfur compounds from Allium sativum and physiological activities. J. Appl. Pharmacol. 11: 8-32 (2003)
  2. Chung JG. Effects of garlic components diallyl sulfide and diallyl disulfide on arylamine N-acetyltransferase activity in human bladder tumor cells. Drug Chem. Toxicol. 22: 343-358 (1999) https://doi.org/10.3109/01480549909017839
  3. Pruthi JS, Singh LJ, Girdhari L. Thermal stability of alliinase and enzymatic regeneration of flavour in odourless garlic powder. Curr. Sci. India 28: 403-404 (1959)
  4. Mazelis M, Crews L. Purification of the alliin lyase of garlic, Allium sativum L. J. Biochem.-Tokyo 108: 725-730 (1968)
  5. Nock LP, Mazelis M. The C-S lyases of higher plants: Direct comparison of the physical properties of homogeneous alliin lyase of garlic (Allium sativum) and onion (Allium cepa). Plant Physiol. 85: 1079-1083 (1987) https://doi.org/10.1104/pp.85.4.1079
  6. Freeman GG, Whenham RJ. The use synthetic(${\pm}$/)-S-1-propyl-Lcystein sulphoxide and of alliinase preparation in studies of flavor changes resulting from processing of onion (Allium cepa L.). J. Sci. Food Agr. 26: 1333-1346 (1975) https://doi.org/10.1002/jsfa.2740260912
  7. Shin DB. Effect of extraction and dehydration methods on flavor compounds of garlic powder. PhD thesis, Chung-Ang University, Seoul, Korea (1995)
  8. Bradford MM. A rapid and sensitive method for the quantification of microgram quantites of proteins utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 (1976) https://doi.org/10.1016/0003-2697(76)90527-3
  9. Friedemann TE, Hangen, GE. Pyruvic acid II. The determination of keto acids in blood and urine. J. Biol. Chem. 147: 415-442(1943)
  10. Leahy MM, Reineccius GA. Comparison of methods for the isolation of volatile compounds from aqueous model system. pp. 19-47. In: Analysis of Volatiles. Schreier P (ed). Walter de Gruyter, Berlin, Germany (1984)
  11. Chun HJ, Lee SW. Studies on antioxidative action of garlic components isolated from garlic (Allium sativum L.). Korean Home Econo. Assoc. 24: 43-51 (1986)
  12. Jeang DY, Jeang SU. Garlic Science. World Science, Seoul, Korea. pp. 93-103 (2005)
  13. Tsao SM, Yin MC. In vitro activity of garlic oil and four diallyl sulphides against antibiotic-resistant Pseudomonas aeruginosa and Klebsiella pneumoniae. J. Antimicrob. Chemoth. 47: 665-670 (2001) https://doi.org/10.1093/jac/47.5.665
  14. Lawson LD, Wood SG, Hughes BG. HPLC analysis of allicin and other thiosulfinates in garlic clove homogenates. Planta Med. 57: 263-270 (1991) https://doi.org/10.1055/s-2006-960087
  15. Tomofumi M, Asako H, Mitsuyo S, Mami Y, Kazuki S. Alliinase [S-alk(en)yl-L-cystein suloxide lyase] from Allium tuberosum (Chinese chive). Eur. J. Biochem. 257: 21-30 (1998) https://doi.org/10.1046/j.1432-1327.1998.2570021.x
  16. Kamel A, Saleh M. Recent studies on the chemistry and biological activities of the organosulfur compounds of garlic (Allium sativum). Vol. 23, pp. 455-485. In: Studies in Natural Products Chemistry. Rahman A (ed). Elsevier, New York, NY, USA (2000)
  17. Block E, Naganathan S, Putman D, Zhao SH. Allium chemistry: HPLC analysis of thiosulfinates from onion, garlic, wild garlic (Ramsons), leek, scallion, shallot, elephant (great-headed) garlic, chive, and Chinese chive. J. Agr. Food Chem. 40: 2418-2430 (1992) https://doi.org/10.1021/jf00024a017
  18. Brodnitz MH, Pascale JV, Derslice LV. Flavor components of garlic extracts. J. Agr. Food Chem. 19: 273-275 (1971) https://doi.org/10.1021/jf60174a007
  19. Schwimmer S, Weston WJ. Enzymatic development of pyruvic acid in onion as a measure of pungency. J. Agr. Food Chem. 9: 301-304 (1961) https://doi.org/10.1021/jf60116a018
  20. Shin DS. Effect of food components and porcessing condition on antimicrobial of garlic-alliinase reaction compounds. MS thesis, Chung-Ang University, Seoul, Korea (2001)
  21. Yu TH, Wu CM, Liou YC. Volatile compounds from garlic. J. Food Sci. 54: 977-981 (1989) https://doi.org/10.1111/j.1365-2621.1989.tb07926.x
  22. Fanelli SL, Castro GD, de Toranzo EG, Castro JA. Mechanisms of the preventive properties of some garlic components in the carbon tetrachloride-promoted oxidative stress. Diallyl sulfide; diallyl disulfide; allyl mercaptan and allyl sulfide. Res. Commun. Mol. Path. 102: 163-174 (1998)
  23. Stoll A, Seebeck E. Chemical investigation on alliin, the specific principle of garlic. Adv. Enzymol. 11: 377-400 (1951)
  24. Spare CG, Virtanin AI. On the lachrymatory factor in onion (Allium cepa) vapors and its precursor. Acta Chem. Scand. 17: 641-650 (1963) https://doi.org/10.3891/acta.chem.scand.17-0641
  25. Law LD, Hughes BG. Characterization of the formation of allicin and other thiosulfinates from garlic. Planta Med. 58: 345-350 (1992) https://doi.org/10.1055/s-2006-961482
  26. Arnault A, Christides JP, Mandon N, Haffner T, kahane R, Auger J. High-performance ion-pair chromatography method for simultaneous analysis of alliin, deoxyalliin, allicin and dipepeptide precursors in garlic products using multiple mass spectrometry and UV detection. J. Chromatogr. A 991: 69-75 (2003) https://doi.org/10.1016/S0021-9673(03)00214-0
  27. Chi MS, Koh ET, Stewart TJ. Effects of garlic on lipid metabolism in rats fed cholesterol or lard. J. Nutr. 112: 241-248 (1982) https://doi.org/10.1093/jn/112.2.241