Effects of PEGylated scFv Antibodies against Plasmodium vivax Duffy Binding Protein on the Biological Activity and Stability In Vitro

  • Kim, So-Hee (Department of Malariology, Paik Institute for Clinical Research, Inje University College of Medicine) ;
  • Lee, Yong-Seok (Department of Malariology, Paik Institute for Clinical Research, Inje University College of Medicine) ;
  • Hwang, Seung-Young (Department of Paasitology, Inje University College of Medicine) ;
  • Bae, Gun-Won (SunBio) ;
  • Nho, Kwang (SunBio) ;
  • Kang, Se-Won (Department of Paasitology, Inje University College of Medicine) ;
  • Kwak, Yee-Gyung (Department of Internal Medicine, Paik Hospital, Inje University College of Medicine) ;
  • Moon, Chi-Sook (Department of Internal Medicine, Paik Hospital, Inje University College of Medicine) ;
  • Han, Yeon-Soo (Department of Agricultural Biology, College of Agriculture and Life Science, Chonnam National University) ;
  • Kim, Tae-Yun (Department of Infection Biology, College of Medicine, Chungnam National University) ;
  • Kho, Weon-Gyu (Department of Malariology, Paik Institute for Clinical Research, Inje University College of Medicine)
  • Published : 2007.10.30


Duffy binding protein (DBP) plays a critical role in Plasmodium vivax invasion of human red blood cells. We previously reported a single-chain antibody fragment (scFv) that was specific to P. vivax DBP (PvDBP). However, the stabilization and the half-life of scFvs have not been studied. Here, we investigated the effect of PEGylated scFvs on their biological activity and stability in vitro. SDS-PAGE analysis showed that three clones (SFDBII-12, -58, and -92) were formed as monomers (about 70 kDa) with PEGylation. Clone SFDBII-58 gave the highest yield of PEGylated scFv. Binding analysis using BIAcore between DBP and scFv showed that both SFDBII-12 and -58 were decreased approximately by two folds at the level of binding affinity to DBP after PEGylation. However, the SFDBII-92 clone still showed a relatively high level of binding affinity ($K_D=1.02{\times}10^{-7}\;M$). Binding inhibition assay showed that PEGylated scFv was still able to competitively bind the PvDBP and playa critical role in inhibiting the interactions between PvDBP protein expressed on the surface of Cos-7 cells and Duffy receptor on the surface of erythrocytes. When both scFvs and their PEGylated counterparts were exposed to trypsin, scFv was completely degraded only after 24 h, whereas 35% of PEGylated scFvs remained intact, maintaining their stability against the proteolytic attack of trypsin until 72 h. Taken together, these results suggest that the PEGylated scFvs retain their stability against proteolytic enzymes in vivo, with no significant loss in their binding affinity to target antigen, DBP.



  1. Babon, J. J., W. D. Morgan, G. Kelly, J. F. Eccleston, J. Feeney, and A. A. Holder. 2007. Structural studies on Plasmodium vivax merozoite surface protein-1. Molec. Biochem. Parasitol. (In press)
  2. Bang, B. Y., H. J. Kim, H. Y. Kim, M. Y. Baik, S. C. Ahn, C. H. Kim, and C. S. Park. 2006. Cloning and overexpression of 4-$\alpha$-glucanotransferase from Thermus brockianus (TBGT) in E. coli. J. Microbiol. Biotechnol. 16: 1809-1813
  3. Choi, J. J., J. W. Park, H. Shim, S. Lee, M. Kwon, J.-S. Yang, H. Hwang, and S.-T. Kwon. 2006. Cloning, expression, and characterization of a hyperalkaline phosphatase from the thermophilic bacterium Thermus sp. T351. J. Microbiol. Biotechnol. 16: 272-279
  4. Demir, I. and Z. Demirbag. 2006. A productive replication of Hyphantria cunea nucleopolyhedrovirus in Lymantria dispar cell line. J. Microbiol. Biotechnol. 16: 1485-1490
  5. Fraser, T., P. Michon, J. W. Barnwell, A. R. Noe, F. Al- Yaman, D. C. Kaslow, and J. H. Adams. 1997. Expression and serologic activity of a soluble recombinant Plasmodium vivax Duffy binding protein. Infect. Immun. 65: 2772-2777
  6. Galinski, M. R. and J. W. Barnwell. 1996. Plasmodium vivax: Merozoites, invasion of reticulocytes and considerations for malaria vaccine development. Parasitol. Today 12: 20-29 https://doi.org/10.1016/0169-4758(96)80641-7
  7. Graff, C. P., K. Chester, R. Begent, and K. D. Wittrup. 2004. Directed evolution of an anti-carcinoembryonic antigen scFv with a 4-day monovalent dissociation half-time a $37^{\circ}C$. Peds. 17: 293-304 https://doi.org/10.1093/protein/gzh038
  8. Han, H. J., S. G. Park, S. H. Kim, S. Y. Hwang, J. Han, J. Traicoff, W. G. Kho, and J. Y. Chung. 2004. Epidermal growth factor-like motifs 1 and 2 of Plasmodium vivax merozoite surface protein 1 are critical domains in erythrocyte invasion. Biochem. Biophys. Res. Commun. 320: 563-570 https://doi.org/10.1016/j.bbrc.2004.06.008
  9. Harris, J. M. and R. B. Chess. 2003. Effect of PEGylation on pharmaceuticals. Nat. Rev. Drug Discov. 2: 214-221 https://doi.org/10.1038/nrd1033
  10. Kim, S. H., S. Y. Hwang, Y. S. Lee. I. H. Choi, S. G. Park, and W. G. Kho. 2007. Single-chain antibody fragment specific for Plasmodium vivax Duffy binding protein. Clin. Vaccine Immunol. 14: 726-731 https://doi.org/10.1128/CVI.00456-06
  11. Kinstler, O., G. Molineux, M. Treuheit, D. Ladd, and C. Gegg. 2002. Mono-N-terminal poly(ethylene glycol)-protein conjugation. Adv. Drug Deliv. Rev. 54: 477-485 https://doi.org/10.1016/S0169-409X(02)00023-6
  12. Kipriyanov, S. M., G. Moldenhauer, M. Braunagel, U. Reusch, B. Cochlovius, F. Le Gall, O. A. Kouprianova, C. W. Von der Lieth, and M. Little. 2003. Effect of domain order on the activity of bacterially produced bispecific single-chain Fv antibodies. J. Mol. Biol. 330: 99-111 https://doi.org/10.1016/S0022-2836(03)00526-6
  13. Kurfurst, M. M. 1992. Detection and molecular weight determination of polyethylene glycol-modified hirudin by staining after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Anal. Biochem. 200: 244-248 https://doi.org/10.1016/0003-2697(92)90460-O
  14. Leong, S. R., L. DeForge, L. Presta, T. Gonzalez, A. Fan, M. Reichert, A. Chuntharapai, K. J. Kim, D. B. Tumas, W. P. Lee, P. Gribling, B. Snedecor, H. Chen, V. Hsei, M. Schoenhoff, V. Hale, J. Deveney, I. Koumenis, Z. Shahrokh, P. McKay, W. Galan, B. Wagner, D. Narindray, C. Hebert, and G. Zapata. 2001. Adapting pharmacokinetic properties of a humanized anti-interleukin-8 antibody for therapeutic applications using site-specific PEGylation. Cytokine 16: 106-119 https://doi.org/10.1006/cyto.2001.0936
  15. McHenry, A. M. and J. H. Adams. 2006. The crystal structure of P. knowlesi DBPalpha DBL domain and its implications for immune evasion. Trends Biochem. Sci. 31: 487-491 https://doi.org/10.1016/j.tibs.2006.07.003
  16. Michon, P., T. Fraser, and J. H. Adams. 2000. Naturally acquired and vaccine-elicited antibodies block erythrocyte cytoadherence of the Plasmodium vivax Duffy binding protein. Infect. Immun. 68: 3164-3171 https://doi.org/10.1128/IAI.68.6.3164-3171.2000
  17. Natarajan, A., C. Y. Xiong, H. Albrecht, G. L. DeNardo, and S. J. DeNardo. 2005. Characterization of site-specific ScFv PEGylation for tumor-targeting pharmaceuticals. Bioconj.ug Chem. 16: 113-121 https://doi.org/10.1021/bc0498121
  18. Park, H. J., Y. J. Kim, and H. K. Kim. 2006. Expression and characterization of a new esterase cloned directly from Agrobacterium tumefaciens genome. J. Microbiol. Biotechnol. 16: 145-148
  19. Park, S. G., Y. J. Jeong, Y. Y. Lee, I. J. Kim, S. K. Seo, E. J. Kim, H. C. Jung, J. G. Pan, S. J. Park, Y. J. Lee, I. S. Kim, and I. H. Choi. 2005. Hepatitis B virus-neutralizing anti-pre- S1 human antibody fragments from large naive antibody phage library. Antiviral Res. 68: 109-115 https://doi.org/10.1016/j.antiviral.2005.06.012
  20. Ranjan, A. and C. E. Chitnis. 1999. Mapping regions containing binding residues within functional domains of Plasmodium vivax and Plasmodium knowlesi erythrocytebinding proteins. Proc. Natl. Acad. Sci. USA 96: 14067-14072
  21. Urquiza, M., M. A. Patarroyo, V. Marin, M. Ocampo, J. Suarez, R. Lopez, A. Puentes, H. Curtidor, J. Garcia, L. E. Rodriguez, R. Vera, A. Torres, M. Laverde, A. P. Robles, and M. E. Patarroyo. 2002. Identification and polymorphism of Plasmodium vivax RBP-1 peptides which bind specifically to reticulocytes. Peptides 23: 2265-2277 https://doi.org/10.1016/S0196-9781(02)00267-X
  22. Xiong, C.-Y., A. Natarajan, X.-B. Shi, G. L. Denardo, and S. J. Denardo. 2006. Development of tumor targeting anti- MUC-1 multimer: Effects of di-scFv unpaired cysteine location on PEGylation and tumor binding, Peds. 19: 359-367 https://doi.org/10.1093/protein/gzl020
  23. Yang, K., A. Basu, M. Wang, R. Chintala, M. C. Hsieh, S. Liu, J. Hua, Z. Zhang, J. Zhou, M. Li, H. Phyu, G. Petti, M. Mendez, H. Janjua, P. Peng, C. Longley, V. Borowski, M. Mehlig, and D. Filpula. 2003. Tailoring structure-function and pharmacokinetic properties of single-chain Fv proteins by site-specific PEGylation. Protein Eng. 16: 761-770 https://doi.org/10.1093/protein/gzg093