DOI QR코드

DOI QR Code

Identification of a Novel SNP Associated with Meat Quality in C/EBP${\alpha}$ Gene of Korean Cattle

  • Shin, S.C. (Division of Animal Science and Resources, College of Life Science and Natural Resources Sangji University) ;
  • Kang, M.J. (Department of Animal Science, College of Agriculture and Life Science, Chonnam National University) ;
  • Chung, E.R. (Division of Animal Science and Resources, College of Life Science and Natural Resources Sangji University)
  • Received : 2006.06.20
  • Accepted : 2006.08.22
  • Published : 2007.04.01

Abstract

CCAAT/enhancer binding protein ${\alpha}$($C/EBP{\alpha}$) plays an important role in lipid deposition and adipocyte differentiation. In order to find genetic markers to improve the meat quality of Korean cattle, the bovine $C/EBP{\alpha}$ gene was chosen as a candidate gene to investigate its association with carcass and meat quality traits in Korean cattle. A single nucleotide polymorphism (SNP) was identified at position 271 (A/C substitution) of coding region in the $C/EBP{\alpha}$ gene. A PCR-RFLP procedure with restriction enzyme SmaI was developed for determining the marker genotypes. The frequencies of alleles C and A and were 0.374 and 0.626, respectively. The genotype frequencies for CC, AC and AA were 12.9, 49.0 and 38.1%, respectively, in Korean cattle population. The frequencies of genotype were in agreement with Hardy-Weinberg equilibrium. Association analysis indicated that the gene-specific SNP marker of $C/EBP{\alpha}$ showed a significant association with marbling score (p<0.05). The animals with AA genotype had higher marbling score than those with the AC or CC genotype. Although further studies are needed to validate our results, the $C/EBP{\alpha}$ gene could be useful as a genetic marker for carcass and meat quality traits in Korean cattle.

Keywords

$C/EBP{\alpha}$ Gene;SNP Marker;Meat Quality, Korean Cattle

Acknowledgement

Supported by : Rural Development Administration

References

  1. Ihara, N., H. Yamakuchi, T. Hirano, H. Takeda, Y. Taniguchi, Y. Sasaki, S. K. Davis, J. F. Taylor, W. Barendse, Y. Sugimoto. 1998. Physical and genetic mapping of bovine CEBP$\alpha$ and PPAR$\gamma$ genes. Anim. Genet. 29:398-400. https://doi.org/10.1046/j.1365-2052.1998.295387.x
  2. Jeoung, Y. H., S. M. Lee, H. Y. Park, D. H. Yoon, S. J. Moon, E. R. Chung and M. J. Kang. 2004. Molecular cloning and mRNA expression of the Hanwoo CCAAT/enhancing-binding Protein $\alpha$(C/EBP$\alpha$) gene. J. Anim. Sci. Technol. (Kor.). 46(6):909-916. https://doi.org/10.5187/JAST.2004.46.6.909
  3. Macneil, M. D. and M. D. Grosz. 2002. Genome-wide scans for QTR affecting carcass traits in Hereford x composite double backcross populations. J. Anim. Sci. 80:2316-2324.
  4. Rothschild, M. F. and G. S. Plastow. 1999. Advances in pig genomes and industry applications. AgBiotechNet 1, 1-8.
  5. Yamamoto, H., S. Kurebayashi, T. Hirose, H. Kouhara and S. Kasayama. 2002. Reduced IRS-2 and GLUT4 expression in PPAR${\gamma}2$-induced adipocytes derived from C/EBP$\beta$ and C/EBP$\gamma$-deficient mouse embryonic fibroblasts. J. Cell Sci. 115:3601-3607 https://doi.org/10.1242/jcs.00044
  6. Wheeler, T. L., L. V. Cundiff and R. M. Koch. 1994. Effect of marbling degree on beef palatability in Bos indicus cattle. J. Anim. Sci. 72:3145-3151. https://doi.org/10.2527/1994.72123145x
  7. Casas, E., R. T. Stone, J. W. Keele, S. D. Shackelford, S. M. Kappes and M. Koohmaraie. 2001. A comprehensive search for quantitative traits loci affecting growth and carcass composition of cattle segregating alternative forms of myostatin. J. Anim. Sci. 79:854-860. https://doi.org/10.2527/2001.794854x
  8. Dekkers, J. C. M., M. F. Rothschild and M. M. Malek. 2001. Potential and application of marker assisted selection for meat quality. Second International Virtual Conference on Pork Quality. 240-263.
  9. Meuwissen, T. H. E. and M. E. Goddard. 1996. The use of marker haplotypes in animal breeding schemes. Genet. Sel. Evol. 28(2):161-176. https://doi.org/10.1186/1297-9686-28-2-161
  10. Morrison, R. F. and S. R. Farmer. 1999. Insight into the transcriptional control of adipocyte differentiation. J. Cell Biochem. 32-33 (Suppl.). 59-67.
  11. Gregoire, F. M., C. M. Smas and H. S. Sul. 1998. Understanding adipocyte differentiation. Physiol. Rev. 78:783-809. https://doi.org/10.1152/physrev.1998.78.3.783
  12. Rosen, E. D., C. J. Walkey, P. Puiserver and B. M. Spiegelman. 2000. Transcriptional regulation of adipogenesis. Genes Dev. 14:1293-1307.
  13. Fajas, L., J. C. Fruchart and J. Auwerx. 1998. Transcriptional control of adipogenesis. Curr. Opin. Cell Biol. 10:165-173. https://doi.org/10.1016/S0955-0674(98)80138-5
  14. Falconer, D. S. and T. F. C. Mackay. 1996. Introduction to Quantitative Genetics. 4th ed. Addison Wesley Limited, Edinburg Gate, Harlow Essex, UK.
  15. Polineni, P., P. Aragonda, S. R. Xavier, R. Furuta and D. L. Adelson. 2006. The bovine QTL viewer: a web accessible database of bovine quantitative trait loci. BMC Bioinfomatics 7:283. https://doi.org/10.1186/1471-2105-7-283
  16. Shin, S. C. and E. R. Chung. 2007b. Association of SNP marker in the thyroglobulin gene with carcass and meat quality traits in Korean cattle. Asian-Aust. J. Anim. Sci. 20:172-177.
  17. Hovenier, R., E. Kanis, T. Van Asseldink and N. G. Westerink. 1993. Breeding for pig meat quality in halothane negative populations-a review. Pig News Info. 14:17N-35N.
  18. Ihara, N., H. Yamakuchi, Y. Taniguchi, Y. Sasaki, G. L. Bennett, S. Kappes and Y. Sugimoto. 2003. Mapping of bovine CEBPD to BTA14q15-17. Anim. Genet. 34:465-476 https://doi.org/10.1046/j.0268-9146.2003.01057.x
  19. Taniguchi, Y. and Y. Sasaki. 1996. Rapid communication: Nucleotide sequence of bovine C/EBP$\alpha$ gene. J. Anim. Sci. 74:2554. https://doi.org/10.2527/1996.74102554x
  20. Salma, N., H. Xiao and A. N. Imbalzano. 2006. Temporal recruitment of CCAAT/enhancer-binding proteins to early and late adipogenic promoters in vivo. J. Mol. Endocrinol. 36:139-161. https://doi.org/10.1677/jme.1.01918
  21. Miller, S. A., D. D. Kykes and H. F. Polesky. 1988. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16:1215. https://doi.org/10.1093/nar/16.3.1215
  22. Shin, S. C. and E. R. Chung. 2007a. Association of SNP marker in the leptin gene with carcass and meat quality traits in Korean cattle. Asian-Aust. J. Anim. Sci. 20:1-6.
  23. Casas, E., J. W. Keele, S. D. Shackelford, M. Koohmaraie, T. S. Sonstegard, T. P. Smith, S. M. Kappes and R. T. Stone. 1998. Association of the muscle hypertrophy locus with carcass traits in beef cattle. J. Anim. Sci. 76:468-473. https://doi.org/10.2527/1998.762468x

Cited by

  1. gene appears to be associated with intramuscular fat deposition in longissimus muscle in Australian cattle vol.40, pp.5, 2009, https://doi.org/10.1111/j.1365-2052.2009.01913.x
  2. appears to be associated with intramuscular fat deposition in the longissimus muscle of cattle vol.49, pp.7, 2009, https://doi.org/10.1071/EA08307
  3. Association between polymorphisms of Myf5 and POU1F1 genes with growth and carcass traits in Hanwoo (Korean cattle) vol.33, pp.4, 2011, https://doi.org/10.1007/s13258-011-0006-4
  4. Haplotype Analysis Improved Evidence for Candidate Genes for Intramuscular Fat Percentage from a Genome Wide Association Study of Cattle vol.6, pp.12, 2011, https://doi.org/10.1371/journal.pone.0029601
  5. Identification and analysis of MC4R polymorphisms and their association with economic traits of Korean cattle (Hanwoo) vol.39, pp.4, 2012, https://doi.org/10.1007/s11033-011-1133-3
  6. Novel single nucleotide polymorphisms of bovine SREBP1 gene is association with fatty acid composition and marbling score in commercial Korean cattle (Hanwoo) vol.40, pp.1, 2013, https://doi.org/10.1007/s11033-012-2055-4
  7. Relationship between Single Nucleotide Polymorphisms in the Peroxisome Proliferator-Activated Receptor Gamma Gene and Fatty Acid Composition in Korean Native Cattle vol.29, pp.2, 2015, https://doi.org/10.5713/ajas.15.0502
  8. In vivo evidence on the functional variation within fatty acid synthase gene associated with lipid metabolism in bovine longissimus dorsi muscle tissue pp.2092-9293, 2017, https://doi.org/10.1007/s13258-017-0634-4