DOI QR코드

DOI QR Code

NF-κB-dependent Regulation of Matrix Metalloproteinase-9 Gene Expression by Lipopolysaccharide in a Macrophage Cell Line RAW 264.7

  • Rhee, Jae-Won (Department of Biochemistry and Institute of Life Science and Biotechnology, College of Science, Yonsei University) ;
  • Lee, Keun-Wook (Center for Medical Science Research, College of Medicine, Hallym University) ;
  • Kim, Dong-Bum (Center for Medical Science Research, College of Medicine, Hallym University) ;
  • Lee, Young-Hee (Department of Biochemistry, College of Natural Science, Chungbuk National University) ;
  • Jeon, Ok-Hee (Department of Biochemistry and Institute of Life Science and Biotechnology, College of Science, Yonsei University) ;
  • Kwon, Hyung-Joo (Center for Medical Science Research, College of Medicine, Hallym University) ;
  • Kim, Doo-Sik (Department of Biochemistry and Institute of Life Science and Biotechnology, College of Science, Yonsei University)
  • Published : 2007.01.31

Abstract

Matrix metalloproteinase-9 (MMP-9) plays a pivotal role in the turnover of extracellular matrix (ECM) and in the migration of normal and tumor cells in response to normal physiologic and numerous pathologic conditions. Here, we show that the transcription of the MMP-9 gene is induced by lipopolysaccharide (LPS) stimulation in cells of a macrophage lineage (RAW 264.7 cells). We provide evidence that the NF-$\kappa$B binding site of the MMP-9 gene contributes to its expression in the LPS-signaling pathway, since mutation of NF-$\kappa$B binding site of MMP-9 promoter leads to a dramatic reduction in MMP-9 promoter activation. In addition, the degradation of l$\kappa$B$\alpha$;, and the presences of myeloid differentiation protein (MyD88) and tumor necrosis factor receptor-associated kinase 6 (TRAF6) were found to be required for LPS-activated MMP-9 expression. Chromatin immunoprecipitation (ChIP) assays showed that functional interaction between NF-$\kappa$B and the MMP-9 promoter element is necessary for LPS-activated MMP-9 induction in RAW 264.7 cells. In conclusion, our observations demonstrate that NF-$\kappa$B contributes to LPS-induced MMP-9 gene expression in a mouse macrophage cell line.

Keywords

References

  1. Bacon, K. R., Camp, R. D., Cunningham, F. M. and Woollard, P. M. (1988) Contrasting in vitro lymphocyte chemotactic activity of the hydroxyl enantiomers of 12-hydroxy-5,8,10,14-eicosatetraenoic acid. Br. J. Pharmacol. 95, 966-974.
  2. Baek, K. H., Ha, S. J. and Sung, Y. C. (2001) A novel function of phosphorothioate oligodeoxynucleotides as chemoattractants for primary macrophages. J. Immunol. 167, 2847-2854. https://doi.org/10.4049/jimmunol.167.5.2847
  3. Bond, M., Fabunmi, R. P., Baker, A. H. and Newby, A. C. (1998) Synergistic upregulation of metalloproteinase-9 by growth factors and inflammatory cytokines: an absolute requirement for transcription factor NF-$\kappa$B. FEBS Lett. 435, 29-34. https://doi.org/10.1016/S0014-5793(98)01034-5
  4. Burns, K., Martinon, F., Esslinger, C., Pahl, H., Schneider, P., Bodmer, J. L., Marco, F. D., French, L. and Tschopp, J. (1998) MyD88, an adaptor protein involved in interleukin-1 signaling. J. Biol. Chem. 273, 12203-1229. https://doi.org/10.1074/jbc.273.20.12203
  5. Cao, Z., Xiong, J., Takeuchi, M., Kurama, T. and Goeddel, D. V. (1996) TRAF6 is a signal transducer for interleukin-1. Nature 383, 443-446. https://doi.org/10.1038/383443a0
  6. Dubois, B., Starckx, S., Pagenstecher, A., Oord, J., Arnold, B. and Opdenakker, G. (2002) Gelatinase B deficiency protects against endotoxin shock. Eur. J. Immunol. 32, 2163-2171. https://doi.org/10.1002/1521-4141(200208)32:8<2163::AID-IMMU2163>3.0.CO;2-Q
  7. Galis, Z. S., Sukhova, G. K., Kranzhofer, R., Clark, S. and Libby, P. (1995) Macrophage foam cells from experimental atheroma constitutively produce matrix-degrading proteinase. Proc. Natl. Acad. Sci. USA 92, 402-406. https://doi.org/10.1073/pnas.92.2.402
  8. Holvoet, S., Vincent, C., Schmitt, D. and Serres, M. (2003) The inhibition of MAPK pathway is correlated with downregulation of MMP-9 secretion induced by TNF-$\alpha$ in human keratinocytes. Exp. Cell. Res. 290, 108-119. https://doi.org/10.1016/S0014-4827(03)00293-3
  9. Hoshino, M., Nakamura, Y., Sim, J., Shimojo, J. and Isogai, S. (1998) Bronchial subepithelial fibrosis and expression of matrix metalloproteinase-9 in asthmatic airway inflammation. J. Allergy Clin. Immunol. 102, 783-788. https://doi.org/10.1016/S0091-6749(98)70018-1
  10. Islam, L. N. and Nabi, A. H. M. N. (2003) Endotoxins of enteric pathogens modulate the functions of human neutrophils and lymphocytes. J. Biochem. Mol. Biol. 36, 565-571. https://doi.org/10.5483/BMBRep.2003.36.6.565
  11. Jing, Z., Liu, Y., Dong, M., Hu, S. and Huang, S. (2004) Identification of the DNA binding element of the human ZNF333 protein. J. Biochem. Mol. Biol. 37, 663-670. https://doi.org/10.5483/BMBRep.2004.37.6.663
  12. Kim, D. S., Han, J. H. and Kwon, H. J. (2003) NF-$\kappa$B and c-Jundependent regulation of macrophage inflammatory protein-2 gene expression in response to lipopolysaccharide in RAW 264.7 cells. Mol. Immunol. 40, 633-634. https://doi.org/10.1016/j.molimm.2003.07.001
  13. Klein, G., Vellenga, E., Fraaije, M. W., Kamps, W. A. and de Bont, E. S. J. M. (2004) The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g. acute leukemia. Crit. Rev. Oncol. Hematol. 50, 87-100.
  14. Kwon, H. J., Lee, K. W., Yu, S. H., Han, J. H. and Kin, D. S. (2003) NF-$\kappa$B-dependent regulation of tumor necrosis factor-a gene expression by CpG-oligodeoxynucleotides. Biochem. Biophys. Res. Commun. 311, 129-138. https://doi.org/10.1016/j.bbrc.2003.09.168
  15. Lai, W. C., Zhou, M., Shankavaram, U., Peng, G. and Wahl, L. M. (2003) Differential regulation of lipopolysaccharide-induced monocyte matrix metalloproteinases (MMP)-1 and MMP-9 by p38 and extracellular signal-regulated kinase 1/2 mitogenactivated protein kinases. J. Immunol. 170, 6244-6249. https://doi.org/10.4049/jimmunol.170.12.6244
  16. Lee, K. W., Lee, Y., Kim, D. S. and Kwon, H. J. (2006) Direct role of NF-kB activation in Toll-like receptor-triggered HLADRA expression. Eur. J. Immunol. 36, 1254-1266. https://doi.org/10.1002/eji.200535577
  17. Lee, K. W., Lee, Y., Kwon, H. J. and Kim, D. S. (2005) Sp1- associated activation of macrophage inflammatory protein-2 promoter by CpG-oligodeoxynucleotide and lipopolysaccharide. Cell. Mol. Life Sci. 62, 188-198. https://doi.org/10.1007/s00018-004-4399-y
  18. Lee, W. J., Shin, C. Y., Yoo, B. K., Ryu, J. R., Choi, E. Y., Cheong, J. H., Ryu, J. H. and Ko, K. H. (2003) Induction of matrix metalloproteinase-9 (MMP-9) in lipopolysaccharidestimulated primary astrocytes is mediated by extracellular signal-regulated protein kinase 1/2 (Erk1/2). Glia 41, 15-24. https://doi.org/10.1002/glia.10131
  19. Lee, Y., Sohn, W. J., Kim, D. S. and Kwon, H. J. (2004) NF-$\kappa$Band c-Jun-dependent regulation of human cytomegalovirus immediate-early gene enhancer/promoter in response to lipopolysaccharide and bacterial CpG-oligodeoxynucleotides in macrophage cell line RAW 264.7. Eur. J. Biochem. 271, 1094-1105.
  20. Opdenakker, G., Van den Steen, P. E. and Van Damme, J. (2001) Gelatinase B: a tuner and amplifier of immune functions. Trends Immunol. 22, 571-579. https://doi.org/10.1016/S1471-4906(01)02023-3
  21. Rhee, J. W., Lee, K. W., Sohn, W. J., Lee, Y., Jeon, O. H., Kwon, H. J. and Kim, D. S. (2007) Regulation of matrix metalloproteinase-9 gene expression and cell migration by NF- $\kappa$B in response to CpG-oligodeoxynucleotides in RAW 264.7 cells. Mol. Immunol. 44, 1393-1400. https://doi.org/10.1016/j.molimm.2006.05.003
  22. Sato, H. and Seiki, M. (1993) Regulatory mechanism of 92 kDa type IV collagenase gene expression which is associated with invasiveness of tumor cells. Oncogene 8, 395-405.
  23. Sohn, W. J., Lee, K. W., Lee, Y., Han, J. H., Choe, Y. K., Kim, D. S. and Kwon, H. J. (2005) Pyrrolidine dithiocarbamateinduced macrophage inflammatory protein-2 gene expression is NF-$\kappa$B-independent but c-Jun-dependent in macrophage cell line RAW 264.7. Mol. Immunol. 42, 1165-1175. https://doi.org/10.1016/j.molimm.2004.11.016
  24. Song, H. Y., Regnier, C. H., Kirschning, C. J., Goeddel, D. V. and Rothe, M. (1997) Tumor necrosis factor (TNF)-mediated kinase cascades: bifurcation of nuclear factor-kappaB and c-jun Nterminal kinase (JNK/SAPK) pathways at TNF receptorassociated factor 2. Proc. Natl. Acad. Sci. USA 94, 9792-9796. https://doi.org/10.1073/pnas.94.18.9792
  25. Underwood, D. C., Osborn, R. R., Bochnowicz, S., Webb, E. F., Rieman, D. J., Lee, J. C., Romanic, A. M., Adams, J. L., Hay, D. W. and Griswold, D. E. (2000) SB 239063, a p38 MAPK inhibitor, reduces neutrophilia, inflammatory cytokines, MMP- 9, and fibrosis in lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 279, L895-902. https://doi.org/10.1152/ajplung.2000.279.5.L895
  26. Van den Steen, P. E., Dubois, B., Nelissen, I., Rudd, P. M., Dwek, R. A. and Opdenakker, G.. (2002) Biochemistry and molecular biology of gelatinase B or matrix-metalloproteinase-9 (MMP-9). Crit. Rev. Biochem. Mol. Biol. 37, 375-536. https://doi.org/10.1080/10409230290771546
  27. Visse, R. and Nagasse. H. (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res. 92, 827-839. https://doi.org/10.1161/01.RES.0000070112.80711.3D
  28. Woo, C. H., Lim, J. H. and Kim, J. H. (2004) Lipopolysaccharide induces matrix metalloproteinase-9 expression via a mitochondrial reactive oxygen species-p38 kinase-activator protein-1 pathway in Raw 264.7 cells. J. Immunol. 173, 6973-6980. https://doi.org/10.4049/jimmunol.173.11.6973
  29. Yoon, S. O., Park, S. J., Yun, C. H. and Chung, A. S. (2003) Roles of matrix metalloproteinases in tumor metastasis and angiogenesis. J. Biochem. Mol. Biol. 36, 128-137. https://doi.org/10.5483/BMBRep.2003.36.1.128
  30. Zhang, F. X., Kirschning, C. J., Mancinelli, R., Xu, X.-P., Jin, Y., Faure, E., Mantovani, A., Rothe, M., Muzio, M. and Arditi, M. (1999) Bacterial lipopolysaccharide activates nuclear factor-kB through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes. J. Biol. Chem. 274, 7611-7614. https://doi.org/10.1074/jbc.274.12.7611

Cited by

  1. The role of peroxidases in the pathogenesis of atherosclerosis vol.44, pp.8, 2011, https://doi.org/10.5483/BMBRep.2011.44.8.497
  2. Anti-inflammatory activity of bark of Dioscorea batatas DECNE through the inhibition of iNOS and COX-2 expressions in RAW264.7 cells via NF-κB and ERK1/2 inactivation vol.48, pp.11, 2010, https://doi.org/10.1016/j.fct.2010.07.048
  3. Saucerneol G, a New Lignan, from Saururus chinensis Inhibits Matrix Metalloproteinase-9 Induction via a Nuclear Factor κB and Mitogen Activated Protein Kinases in Lipopolysaccharide-Stimulated RAW264.7 Cells vol.33, pp.12, 2010, https://doi.org/10.1248/bpb.33.1944
  4. PredictingIn VivoResponses to Biomaterials via CombinedIn VitroandIn SilicoAnalysis vol.21, pp.2, 2015, https://doi.org/10.1089/ten.tec.2014.0167
  5. SIRT2 inhibition exacerbates neuroinflammation and blood-brain barrier disruption in experimental traumatic brain injury by enhancing NF-κB p65 acetylation and activation vol.136, pp.3, 2016, https://doi.org/10.1111/jnc.13423
  6. Tumor suppression in basal keratinocytes via dual non-cell-autonomous functions of a Na,K-ATPase beta subunit vol.5, 2016, https://doi.org/10.7554/eLife.14277
  7. The nuclear factor- B pathway is involved in matrix metalloproteinase-9 expression in RU486-induced endometrium breakdown in mice vol.27, pp.7, 2012, https://doi.org/10.1093/humrep/des110
  8. Aesculin inhibits matrix metalloproteinase-9 expression via p38 mitogen activated protein kinase and activator protein 1 in lipopolysachride-induced RAW264.7 cells vol.14, pp.3, 2012, https://doi.org/10.1016/j.intimp.2012.07.013
  9. Moringa Fruit Inhibits LPS-InducedNO/iNOSExpression through Suppressing theNF-κBActivation in RAW264.7 Cells vol.41, pp.05, 2013, https://doi.org/10.1142/S0192415X13500754
  10. Activated α2 macroglobulin induces matrix metalloproteinase 9 expression by low-density lipoprotein receptor-related protein 1 through MAPK-ERK1/2 and NF-κB activation in macrophage-derived cell lines vol.111, pp.3, 2010, https://doi.org/10.1002/jcb.22737
  11. Involvement of placental growth factor in Wallerian degeneration vol.59, pp.3, 2011, https://doi.org/10.1002/glia.21108
  12. Suppressive effect of carotenoid extract of Dunaliella salina alga on production of LPS-stimulated pro-inflammatory mediators in RAW264.7 cells via NF-κB and JNK inactivation vol.5, pp.2, 2013, https://doi.org/10.1016/j.jff.2013.01.001
  13. Role of the NF-κB transcription pathway in the haemozoin- and 15-HETE-mediated activation of matrix metalloproteinase-9 in human adherent monocytes vol.12, pp.12, 2010, https://doi.org/10.1111/j.1462-5822.2010.01508.x
  14. A Macrophage Cell Model for Selective Metalloproteinase Inhibitor Design vol.9, pp.13, 2008, https://doi.org/10.1002/cbic.200800148
  15. Association of COPD exacerbation frequency with gene expression of pattern recognition receptors in inflammatory cells in induced sputum vol.10, pp.1, 2016, https://doi.org/10.1111/crj.12171
  16. A Novel Herbal Medicine KIOM-MA Exerts an Anti-Inflammatory Effect in LPS-Stimulated RAW 264.7 Macrophage Cells vol.2012, 2012, https://doi.org/10.1155/2012/462383
  17. A Benzochalcone Derivative, (E)-1-(2-hydroxy-6-methoxyphenyl)-3-(naphthalen-2-yl)prop-2-en-1-one (DK-512), Inhibits Tumor Invasion through Inhibition of the TNFα-Induced NF-κB/MMP-9 Axis in MDA-MB-231 Breast Cancer Cells vol.2016, 2016, https://doi.org/10.1155/2016/4921717
  18. Then-Hexane, ethylacetate, and butanol fractions from Hydnocarpi Semen enhanced wound healing in a mice ulcer model vol.34, pp.6, 2012, https://doi.org/10.3109/08923973.2012.681328
  19. Betulinic acid attenuates renal oxidative stress and inflammation in experimental model of murine polymicrobial sepsis vol.70, 2015, https://doi.org/10.1016/j.ejps.2015.01.001
  20. The vertebrate homologue of sulfide-quinone reductase in mammalian mitochondria vol.358, pp.3, 2014, https://doi.org/10.1007/s00441-014-1983-9
  21. Pyrrolidine dithiocarbamate-induced activation of ERK and increased expression of c-Fos in mouse embryonic stem cells vol.42, pp.3, 2009, https://doi.org/10.5483/BMBRep.2009.42.3.148
  22. The In Vitro and In Vivo Response to MMP-Sensitive Poly(Ethylene Glycol) Hydrogels vol.44, pp.6, 2016, https://doi.org/10.1007/s10439-016-1608-4
  23. Interleukin-1 signaling pathway as a therapeutic target in transthyretin amyloidosis vol.21, pp.3, 2014, https://doi.org/10.3109/13506129.2014.927759
  24. Polyphenols from Chilean Propolis and Pinocembrin Reduce MMP-9 Gene Expression and Activity in Activated Macrophages vol.2016, 2016, https://doi.org/10.1155/2016/6505383
  25. Diallyl-disulfide, an organosulfur compound of garlic, attenuates airway inflammation via activation of the Nrf-2/HO-1 pathway and NF-kappaB suppression vol.62, 2013, https://doi.org/10.1016/j.fct.2013.09.012
  26. The bio-complex "reaction pattern in vertebrate cells" reduces cytokine-induced cellular adhesion molecule mRNA expression in human endothelial cells by attenuation of NF-kappaB translocation vol.42, pp.2, 2009, https://doi.org/10.5483/BMBRep.2009.42.2.106
  27. Curcumin Alleviates oxLDL Induced MMP-9 and EMMPRIN Expression through the Inhibition of NF-κB and MAPK Pathways in Macrophages vol.8, 2017, https://doi.org/10.3389/fphar.2017.00062
  28. Methamphetamine and HIV-1 gp120 Effects on Lipopolysaccharide Stimulated Matrix Metalloproteinase-9 Production by Human Monocyte-Derived Macrophages vol.40, pp.5, 2011, https://doi.org/10.3109/08820139.2011.559499
  29. Pharmacological Investigation of the Anti-Inflammation and Anti-Oxidation Activities of Diallyl Disulfide in a Rat Emphysema Model Induced by Cigarette Smoke Extract vol.10, pp.1, 2018, https://doi.org/10.3390/nu10010079
  30. Exogenous Heat Shock Cognate Protein 70 Suppresses LPS-Induced Inflammation by Down-Regulating NF-κB through MAPK and MMP-2/-9 Pathways in Macrophages vol.23, pp.9, 2018, https://doi.org/10.3390/molecules23092124
  31. Differential gene expression mediated by 15-hydroxyeicosatetraenoic acid in LPS-stimulated RAW 264.7 cells vol.8, pp.1, 2009, https://doi.org/10.1186/1475-2875-8-195