Functional characterization of $P_{2X}/P_{2Y}$ receptor in isolated swine renal artery

  • Kim, Joo-heon (College of Veterinary Medicine, Gyeongsang National University) ;
  • Jeon, Je-cheol (College of Veterinary Medicine, Gyeongsang National University) ;
  • Lee, Sang-kil (College of Veterinary Medicine, Gyeongsang National University) ;
  • Lee, Su-jin (College of Biomedical Science & Engineering, Inje University) ;
  • Lee, Younggeon (College of Biomedical Science & Engineering, Inje University) ;
  • Won, Jinyoung (College of Biomedical Science & Engineering, Inje University) ;
  • Kang, Jae seon (College of Engineering, Inje University) ;
  • Hong, Yonggeun (College of Biomedical Science & Engineering, Inje University)
  • Accepted : 2006.11.16
  • Published : 2007.12.30


To understand the role of $PM_{2X}/P_{2Y}$ receptor in cortex region of kidney and renal artery, molecular and functional analysis of $PM_{2X}/P_{2Y}$ receptor by pharmacophysiological skill in conventional swine tissues were performed. In functional analysis of $P_{2Y}$ receptor for vascular relaxation, 2-methylthio adenosine triphosphate, a strong agonist of $P_{2Y}$ receptor, induced relaxation of noradrenaline (NA)-precontracted renal artery in a dose-dependent manner. Strikingly, relaxative effect of ATP, 2-msATP, agonists of $P_{2Y}$ receptor, abolished by treatment of reactive blue 2, a putative $P_{2Y}$ receptor antagonist. In contrast, no significant differences of gene encoding $PM_{2X}/P_{2Y}$ and protein expression in immortalized suprachiasmatic nucleus from brain, primary isolated vascular smooth muscle cells from renal artery of pigs and HEK293 from human embryonic kidney under with/without adenosine triphosphate were observed. Taken together, the relationship between molecular and functional characteristic of $PM_{2X}/P_{2Y}$ receptors in conventional pig should be considered that they are another important factor which regulate the kidney function in swine. Based on this study, we propose the purinergic receptor as well as adrenergic and cholinergic receptors is an essential component of the renal homeostasis.


Supported by : Rural Development Administration


  1. Abbracchio MP, Burnstock G. Purinoreceptors: are there families of $P_{2X}$ and P$P_{2Y}$ Purinoreceptor? Pharmacol Ther 1994, 64, 445-475
  2. Bo X, Jiang LH, Wilson HL, Kim M, Burnstock G, Surprenant A, North RA. Pharmacological and biophysical properties of the human $P_{2X5}$ receptor. Mol Pharmacol 2003, 63, 1407-1416
  3. Burnstock G, Kennedy C. Is there a basis for distinguishing two types of $P_{2}$-purinoceptor? Gen Pharmacol 1985, 16, 433-440
  4. Damer S, Niebel B, Czeche S, Nickel P, Ardanuy U, Schmalzing G, Rettinger J, Mutschler E, Lambrecht G NF279: A novel potent and selective antagonist of $P_{2X}$ receptor-mediated responses. Eur J Pharmacol 1998, 350, R5-6
  5. Kadowaki M, Nagakura Y, Tokita K, Hanaoka K, Tomoi M. Adenosine A, receptor blockade reverses experimental postoperative ileus in rat colon. Eur J Pharmacol 2003, 458, 197-200
  6. Mastick CC, Saltiel AR. Insulin-stimulated tyrosine phosphorylation of caveolin is specific for the differentiated adipocyte phenotype in 3T3-L1 cells. J Bioil Chem 1997, 272, 20706-20714
  7. Serio R, Alessandro M, Zizzo MG, Tamburello MP, Mule F. Neurotransmitters involved in the fast inhibitory junction potentials in mouse distal colon. Eur J Pharmacol 2003, 460, 183-190
  8. perlagh B, Illes P, Gerevich Z, Kofalvi A. Distinct mechanisms underlying $\alpha_{1}$-adrenoceptor and $P_{2X}$ purinoceptor operated ATP release and contraction in the guinea-pig vas deferens. Neurochem Res 2002, 26, 951-957
  9. Vial C, Evans RJ. Smooth muscle does not have a common $P_{2X}$ receptor phenotype: expression, ontogeny and function of $P_{2Xl}$ receptors in mouse ileum, bladder and reproductive systems. Auton Neurosci 2001, 92, 56-64
  10. Xue L, Farrugia G, Sarr MG, Szurszewski JH. ATP is a mediator of the fast inhibitory junction potential in human jejunal circular smooth muscle. Am J Physiol 1999, 276, G1373-1379
  11. Boeckxstaens GE, Pelckmans PA, Bult H, De Man JG, Herman AG, van Maercke YM. Evidence for nitric oxide as mediator of non-adrenergic noncholinergic relaxation induced by ATP and GABA in the canine gut. Br J Pharmacol 1991, 102, 434-438
  12. Galligan JJ, LePard KJ, Schneider DA, Zhou X. Multiple mechanisms of fast excitatory synaptic transmission in the enteric nervous system. J Auton Ner Syst 2000, 81, 97-103
  13. Schlegel A, Lisanti MP. A molecular dissection of caveolin-I membrane attachment and oligomerization. J BioI Chem 2000, 275, 21605-21617
  14. Burnstock G Comparative studies of purinergic nerves. J Exp Zool 1975, 194, 103-133
  15. Heinemann A, Shahbazian A, Bartho L, Holzer P. Different receptors mediating the inhibitory action of exogenous ATP and endogenously released purines on guinea-pig intestinal peristalsis. Br J Pharmacol 1999, 128, 313-320
  16. Giaroni C, Knight GE, Ruan HZ, Glass R, Bardini M, Lecchini S, Frigo G, Burnstock G $P_{2}$ receptors in the murine gastrointestinal tract. Neuropharmacology 2002, 43, 1313-1323
  17. Hu B, Chiang CY, Hu JW, Dostrovsky JO, Sess1e BJ. $P_{2X}$ receptors in trigeminal subnucleus caudalis modulate central sensitization in trigeminal subnucleus oralis. J Neurophysiol 2002, 88, 1614-1624
  18. Bartho L, Lenard L Jr, Maggi CA. Evidence for the involvement of $P_{2}$-purinoceptors in the cholinergic contraction of the guinea-pig ileum. Br J Pharmacol 1997, 121, 1507-1508
  19. Johnson CR, Charlton SJ, Hourani SM. Responses of the longitudinal muscle and the muscularis mucosae of the rat duodenum to adenine and uracil nucleotides. Br J Pharmacol 1996, 117, 823-830
  20. King B, Chen CC, Akopian AN, Burnstock G, Wood JN. A role for calcineurin in the desensitization of the $P_{2X3}$ receptor. Neuroreport 1997, 8, 1099-1102
  21. Matsuo K, Katsuragi T, Fujiki S, Sato C, Furukawa T. ATP release and contraction mediated by different Prreceptor subtypes in guinea-pig ileal smooth muscle. Br J Pharmacol 1997, 121, 1744-1748
  22. Kennedy I, Humphrey PPA. Evidence for the presence of two types of $P_{2}$ purinoceptor in the guineapig ileal longitudinal smooth muscle preparation. Eur J Pharmacol 1994, 261, 273-280
  23. Klapperstiick M, Biittner C, Nickel P, Schmalzing G, Lambrecht G, Markwardt F. Antagonism by the suramin analogue NF279 on human $P_{2X1}$ and $P_{2X7}$ receptors. Eur J Pharmacol 2000, 387, 245-252
  24. Burnstock G. A basis for distinguishing two types of purinergic receptor. In: Straub RW, Bolis L. (eds.). Cell Membrane Receptors for Drugs and Hormones. A Multidisciplinary Appoach. pp. 107-118, Raven Press, New York, 1978
  25. King BF, Wildman SS, Ziganshina LE, Pintor J, Burnstock G Effects of extracellular pH on agonism and antagonism at a recombinant $P_{2X2}$ receptor. Br J Pharmacol 1997, 121, 1445-1453
  26. North RA. Molecular physiology of $P_{2X}$ receptors. Physiol Rev 2002, 82, 1013-1067
  27. Burnstock G, Campbell G, Satchell D, Smythe A. Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. Br J Phannacol 1970, 40, 668-688
  28. Jarvis MF, Burgard EC, Mcgaraughty S, Honore P, Lynch K, Brennan TJ, Subieta A, Van Riesen T, Cartmell J, Bianchi B, Niforatos W, Kage K, Yu H, Mikusa J, Wismer CT, Zhu CZ, Chu K, Lee CH, Stewart AO, Polakowski J, Cox BF, Kowaluk E, Williams M, Sullivan J, Fa1tynek C. A-317491, a novel potent and selective non-nucleotide antagonist of $P_{2X3}$ and $P_{2X2/3}$ receptors, reduces chronic inflammatory and neuropathic pain in the rat. Proc Natl Acad Sci USA 2002, 99, 17179-17184
  29. Ralevic V, Burnstock G. Receptors for purines and pyrimidines. Pharmacol Rev 1998, 50, 413-492
  30. Biiltmann R, Tuluc F, Starke K. On the suitability of adenosine 3-phosphate 5-phosphosulphate as a selective $P_{2Y}$ receptor antagonist in intact tissues. Eur J Pharmacol 1998, 351, 209-215
  31. Moody CJ, Burnstock G Evidence for the presence of Pl-purinoceptors on cholinergic nerve terminals in the guinea-pig ileum. Eur J Pharmacol 1982, 77, 1-9
  32. Rettinger J, Aschrafi A, Schmalzing G. Roles of individual N-glycans for ATP potency and expression of the rat $P_{2X1}$ receptor. J BioI Chem 2000,275,33542-33547
  33. Soediono P, Burnstock G. Contribution of ATP and nitric oxide to NANC inhibitory transmission in rat pyloric sphincter. Br J Pharmacol 1994, 113, 681-686