DOI QR코드

DOI QR Code

Electrochemical Properties of Spinel LiMn2O4 Prepared Through Different Synthesis Routes

스피넬형 양극활물질 LiMn2O4의 합성방법에 따른 전기화학적 특성 비교

  • Lee, Ki-Soo (Department of Chemical Engineering, Center for Information and Communication Materials, Hanyang University) ;
  • Bang, Hyun-Joo (Department of Chemical Engineering, Center for Information and Communication Materials, Hanyang University) ;
  • Sun, Yang-Kook (Department of Chemical Engineering, Center for Information and Communication Materials, Hanyang University)
  • Published : 2007.02.28

Abstract

In order to investigate the effects of particle size and specific surface area(BET area) of spinel powder, $LiMn_2O_4$ were synthesized using metal oxide precursor by co-precipitation method(CoP) and solid state reaction (SSR) .X-ray diffraction(XRD) patterns revealed that the both prepared powder has a well developed spinel structure with Fd3m space group. The $LiMn_2O_4$ prepared by co-precipitation showed spherical morphology with narrow size distribution. However, the $LiMn_2O_4$ prepared by solid state reaction showed relatively smaller particles with irregular shape. The measured BET areas of the powers are $0.8m^2g^{-1}$ (CoP) and $3.6m^2g^{-1}$(SSR). The electrochemical performance of the Prepared $LiMn_2O_4$ powders was evaluated using coin type cells(CR2032) at elevated temperature ($55^{\circ}C$). The $LiMn_2O_4$ prepared by co-precipitation showed the better cycling performance(82.3%capacity retention at $50^{th}$ cycle) than that of the $LiMn_2O_4$(68.3%) prepared by solid state reaction at elevated temperature.

References

  1. K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, Mater. Res. Bull., 12, 783 (1980)
  2. J. B. Goodenough, K. Mizushima, and T. Takeda, J. Appl. Phys., 19 , 305 (1980) https://doi.org/10.1143/JJAP.19.L305
  3. S. Levasseur, M. Menetrier, E. Suard, and C. Delmas, Solid State Ionics, 123, 11 (2000) https://doi.org/10.1016/S0167-2738(99)00086-7
  4. J. M. Tarascon, and D. Guyomard, Electrochim. Acta, 38, 1221(1993) https://doi.org/10.1016/0013-4686(93)80053-3
  5. T. Ohzuku, and Y. Makimura, Chem. Lett., 744 (2001)
  6. T. Ohzuku, and Y. Makimura, Chem. Lett., 642 (2001)
  7. S.-H. Park, H.-S. Shin, S.-T. Myung, C. S. Yoon, K. Amine, and Y.-K. Sun, Chem. Mater., 17, 6 (2005) https://doi.org/10.1021/cm048433e
  8. M.-H. Lee, Y.-J. Kang, S.-T. Myung, and Y.-K. Sun, Electrochim. Acta, 50, 939 (2004) https://doi.org/10.1016/j.electacta.2004.07.038
  9. R. J. Gummow, A. de Kock, M. M. Thackeray, Solid State Ionics, 69, 59 (1994) https://doi.org/10.1016/0167-2738(94)90450-2
  10. D. H. Jang, Y. J. Shin, and S. M. Oh, J. Electrochem. Soc., 143, 143 (1996) https://doi.org/10.1149/1.1836955
  11. Y. Xia, Y. Zhou, and M. Yoshio, J. Electrochem. Soc., 144, 2204 (1997)
  12. M. M. Thackeray, Y. Shao-Horn, and A. J. Kahaian, Electrochem. Soc. Interface, 1, 7 (1998)