DOI QR코드

DOI QR Code

A Numerical Approach to Indentation Techniques for Thin-film Property Evaluation

박막 물성평가 압입시험의 수치접근법

  • 이진행 (서강대학교 대학원 기계공학과) ;
  • 유한석 (서강대학교 대학원 기계공학과) ;
  • 이형일 (서강대학교 기계공학과)
  • Published : 2007.03.01

Abstract

In this work, the prior indentation theory for a bulk material is extended to an indentation theory for evaluation of thin-film material properties. We first select the optimal data acquisition location, where the strain gradient is the least and the effect of friction is negligible. A new numerical approach to the thin-film indentation technique is then proposed by examining the finite element solutions at the optimal point. With this new approach, from the load-depth curve, we obtain the values of Young's modulus, yield strength, strain-hardening exponent. The average errors of those values are less than 3, 5, 8% respectively.

Keywords

Thin-film;Indentation;FEA;Material Property

References

  1. Doerner, M. F. and Nix W. D., 1986, 'A Method for Interpreting the Data from Depth-sensing Indentation Instruments,' Journal of Materials Research Vol. 1, pp. 601-609 https://doi.org/10.1557/JMR.1986.0601
  2. Oliver, W. C. and Pharr, G. M., 1992, 'An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,' Journal of Materials Research Vol. 7, pp. 1564-1583 https://doi.org/10.1557/JMR.1992.1564
  3. Knapp, J. A., Follstaedt, D. M., Myers, S. M., Barbour, J. C. and Friedmann, T. A., 1999, 'Finite-Element Modeling of Nano-indentation,' Journal of Applied Physics Vol. 85, pp. 1460-1474 https://doi.org/10.1063/1.369178
  4. Muliana, A., Steward, R., Haj-ali, R. M and Saxena, A., 2002, 'Artificial Neural Network and Finite Element Modeling of Nano-indentation Tests,' Metallurgical and Materials Transactions 33A, pp. 1939-1947 https://doi.org/10.1007/s11661-002-0027-3
  5. Lee, H., Lee, J. H. and Pharr, G. M., 2005, 'A Numerical Approach to Spherical Indentation Technique for Material Property Evaluation,' Journal of the Mechanics and Physics of Solids, Vol. 53, pp. 2037-2069 https://doi.org/10.1016/j.jmps.2005.04.007
  6. ABAQUS User's Manual, 2002, Version 6.3, Hibbitt, Karlsson and Sorensen, Inc., Pawtucket, RI
  7. Rice, J. R. and Rosengren, G. F., 1968, 'Plane Strain Deformation Near a Crack-tip in a Power Law Hardening Material,' Journal of the Mechanics and Physics of Solids, Vol. 16, pp. 1-12 https://doi.org/10.1016/0022-5096(68)90013-6
  8. Pharr, G. M., Oliver, W. C. and Brotzen, F. R., 1992, 'On the Generality of the Relationship among Contact Stiffness, Contact Area and Elastic Modulus during Indentation,' Journal of Materials Research Vol. 7, pp. 613-617 https://doi.org/10.1557/JMR.1992.0613
  9. Field, J. S. and Swain, M. V., 1993, 'A Simple Predictive Model for Spherical Indentation,' Journal of Materials Research Vol. 8, pp. 297-306 https://doi.org/10.1557/JMR.1993.0297
  10. Lee, J. H., 2006, A Numerical Approach and Experimental Verification of the Indentation Techniques for Material Property and Residual Stress Evaluation, Ph. D. Thesis, Department of Mechanical Engineering, Sogang University

Cited by

  1. A Dual Triangular Pyramidal Indentation Technique Based on FEA Solutions for Material Property Evaluation vol.36, pp.1, 2012, https://doi.org/10.3795/KSME-A.2012.36.1.017
  2. A Conical Indentation Technique Based on FEA Solutions for Property Evaluation vol.33, pp.9, 2009, https://doi.org/10.3795/KSME-A.2009.33.9.859