DOI QR코드

DOI QR Code

ARITHMETIC OF THE MODULAR FUNCTIONS j1,2 AND j1,3

  • Kim, Chang-Heon (Department of Mathematics Seoul Women's University) ;
  • Koo, Ja-Kyung (Korea Advanced Institute of Science and Technology Department of Mathematics)
  • Published : 2007.02.28

Abstract

We find the uniformizers of modular curves $X_{1}(N)\;(N=2,3)$ and explore the relationship with Thompson series and number theoretic property.

Keywords

modular curve;uniformizer;normalized generator;Thompson series

References

  1. R. E. Borcherds, Monstrous moonshine and monstrous Lie superalgebras, Invent. Math. 109 (1992), no. 2, 405-444 https://doi.org/10.1007/BF01232032
  2. J. H. Conway and S. P. Norton, Monstrous moonshine, Bull. London Math. Soc. 11 (1979), no. 3, 308-339 https://doi.org/10.1112/blms/11.3.308
  3. M. Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkorper, Abh. Math. Sem. Hansischen Univ. 14 (1941), 197-272 https://doi.org/10.1007/BF02940746
  4. K. Harada, Moonshine of Finite Groups, Ohio State University, (Lecture Note)
  5. C. H. Kim and J. K. Koo, On the genus of some modular curve of level N, Bull. Austral. Math. Soc. 54 (1996), no. 2, 291-297 https://doi.org/10.1017/S0004972700017755
  6. C. H. Kim and J. K. Koo, Arithmetic of the modular function $\jmath_{1,4}$, Acta Arith. 84 (1998), no. 2, 129-143 https://doi.org/10.4064/aa-84-2-129-143
  7. C. H. Kim and J. K. Koo, Arithmetic of the modular function $\jmath_{1,8}$, Ramanujan J. 4 (2000), no. 3, 317-338 https://doi.org/10.1023/A:1009857205327
  8. S. Lang, Elliptic Functions, Graduate Texts in Mathematics, 112. Springer-Verlag, New York, 1987
  9. T. Miyake, Modular Forms, Translated from the Japanese by Yoshitaka Maeda. Springer-Verlag, Berlin, 1989
  10. A. Neron, Modeles minimaux des varietes abeliennes sur les corps locaux et globaux, Inst. Hautes Etudes Sci. Publ. Math. No. 21 (1964), 5-128
  11. R. Rankin, Modular Forms and Functions, Cambridge University Press, Cambridge-New York-Melbourne, 1977
  12. B. Schoeneberg, Elliptic modular functions: an introduction, Translated from the Ger-man by J. R. Smart and E. A. Schwandt. Die Grundlehren der mathematischen Wis-senschaften, Band 203. Springer-Verlag, New York-Heidelberg, 1974
  13. J.-P. Serre and J. Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), 492-517 https://doi.org/10.2307/1970722
  14. J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, 151. Springer-Verlag, New York, 1994
  15. J. G. Thompson, Some numerology between the Fischer-Griess Monster and the elliptic modular function, Bull. London Math. Soc. 11 (1979), no. 3, 352-353 https://doi.org/10.1112/blms/11.3.352
  16. C. R. Ferenbaugh, The genus-zero problem for $n\left|h$-type groups, Duke Math. J. 72 (1993), no. 1, 31-63 https://doi.org/10.1215/S0012-7094-93-07202-X
  17. N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Graduate Texts in Mathematics, 97. Springer-Verlag, New York, 1984
  18. G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971