DOI QR코드

DOI QR Code

ON STABILITY OF BANACH FRAMES

  • Jain Pawan Kumar (Department of Mathematics University of Delhi) ;
  • Kaushik Shiv Kumar (Department of Mathematics Kirorimal College (University of Delhi)) ;
  • Vashisht Lalit Kumar (Department of Mathematics University of Delhi)
  • Published : 2007.02.28

Abstract

Some stability theorems (Paley-Wiener type) for Banach frames in Banach spaces have been derived.

Keywords

frame;Banach frame;stability

References

  1. R. Balan, Stability theorems for Fourier frames and wavelet Riesz bases, J. Fourier Anal. Appl. 3 (1997), no. 5, 499-504 https://doi.org/10.1007/BF02648880
  2. P. G. Casazza, D. Han, and D. R. Larson, Frames for Banach spaces, Contem. Math. 247 (1999), 149-182 https://doi.org/10.1090/conm/247/03801
  3. O. Christensen, A Paley-Wiener Theorem for frames, Proc. Amer. Math. Soc. 123 (1995), no. 7, 2199-2201
  4. O. Christensen and C. Heil, Perturbations of Banach frames and atomic decompositions, Math. Nachr. 185 (1997), 33-47 https://doi.org/10.1002/mana.3211850104
  5. R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569-645 https://doi.org/10.1090/S0002-9904-1977-14325-5
  6. I. Daubechies, A. Grossmann, and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986), no. 5, 1271-1283 https://doi.org/10.1063/1.527388
  7. R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366. https://doi.org/10.2307/1990760
  8. H. G. Feichtinger and K. Grochenig, A unified approach to atomic decompositions via integrable group representations, In: Proc. Conf. 'Function Spaces and Applications', Lecture Notes Math. 1302, Berling - Heidelberg - New York: Springer (1988), 52-73 https://doi.org/10.1007/BFb0078857
  9. K. Grochenig, Describing functions: Atomic decompositions versus frames, Monatsh. Math. 112 (1991), no. 1, 1-41 https://doi.org/10.1007/BF01321715
  10. J. Zhang, Stability of wavelet frames and Riesz bases, with respect to dilations and translations, Proc. Amer. Math. Soc. 129 (2001), no. 4, 1113-1121 https://doi.org/10.1090/S0002-9939-00-05660-4
  11. S. J. Favier and R. A. Zalik, On the stability of frames and Riesz bases, Appl. Comput. Harmon. Anal. 2 (1995), no. 2, 160-173. https://doi.org/10.1006/acha.1995.1012
  12. I. Singer, Bases in Banach space-II, Springer Verlag, 1981

Cited by

  1. ON FRAME SYSTEMS IN BANACH SPACES vol.07, pp.01, 2009, https://doi.org/10.1142/S021969130900274X
  2. Banach Λ-Frames for Operator Spaces vol.04, pp.08, 2014, https://doi.org/10.4236/apm.2014.48048
  3. The stability of Banach frames in Banach spaces vol.26, pp.12, 2010, https://doi.org/10.1007/s10114-010-9219-8
  4. Some characterizations of fusion Banach frames vol.13, pp.03, 2015, https://doi.org/10.1142/S0219691315500150
  5. On WH-packets of matrix-valued wave packet frames in L2(ℝd, ℂs×r) vol.16, pp.03, 2018, https://doi.org/10.1142/S0219691318500224
  6. Ester Derivatives from Tannase-Treated Prunioside A and Their Antiinflammatory Activities. vol.38, pp.23, 2007, https://doi.org/10.1002/chin.200723179