DOI QR코드

DOI QR Code

Production of a High Value-Added Soybean Containing Bioactive Mevinolins and Isoflavones

  • Pyo, Young-Hee (Traditional Food Research Division, Korea Food Research Institute)
  • Published : 2007.03.31

Abstract

The production of mevinolin, a potent hypocholesterolemic drug, and the bioconversion of isoflavones were investigated in soybeans fermented with Monascus pilosus KFRI-1140. The highest yields of 2.94 mg mevinolins and 1.13 mg isoflavone aglycones per g dry weight of soybean were obtained after 20 days of fermentation. Mevinolin was present in the fermentation substrate predominantly in the hydroxycarboxylate form (open lactone, 94.8$\sim$96.7%), which is currently being used as an hypocholesterolemic agent. The significant (p<0.01) bioconversion (96.6%) of the glucoside isoflavones (daidzin, glycitin, genistin) present in the soybean to the bioactive aglycones (daidzein, glycitein, genistein), with a 15.8-fold increase of aglycones was observed. The results suggest that Monascus-fermented soybean has potential as a novel medicinal food or multifunctional food supplement.

References

  1. Buckland B, Gbewonyo K, Hallada T, Kaplan L, Masurekar P. 1989. Novel microbial products for medicine and agriculture. Elsevier, Amsterdam. p 161-169
  2. Juzlova P, Martinkova L, Kren V. 1996. Secondary metabolites of the fungus Monascus: a review. J Indus Microbiol 16: 163-170 https://doi.org/10.1007/BF01569999
  3. Goldstein JL, Brown MS. 1984. Progress in understanding the LDL receptor and HMG-CoA reductase, two membrane proteins that regulate the plasma cholesterol. J Lipid Res 25: 1450-1461
  4. Manzoni M, Rollini M. 2002. Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl Microbiol Biotechnol 58: 555-564 https://doi.org/10.1007/s00253-002-0932-9
  5. Li YG, Zhang F, Wang ZT, Hu ZB. 2004. Identification and chemical profiling of monacolins in red yeast rice using high-performance liquid chromatography with photodiode array detector and mass spectrometry. J Pharmaceut Biomed 35: 1101-1112 https://doi.org/10.1016/j.jpba.2004.04.004
  6. Lai LST, Tsai TH, Wang TC, Cheng TY. 2005. The influence of culturing environments on lovastatin production by Aspergillus terreus in submerged cultures. Enzyme Microb Tech 36: 737-748 https://doi.org/10.1016/j.enzmictec.2004.12.021
  7. Endo A, Hasumi K, Negishi S. 1985. Monacolins J and L new inhibitors of cholesterol biosynthesis produced by Monascus ruber. J Antibiotechnol 38: 420-422 https://doi.org/10.7164/antibiotics.38.420
  8. Pandy A, Soccol CR, Mitchell D. 2000. New developments in solid state fermentation: I-bioprocesses and products. Process Biochem 35: 1153-1169 https://doi.org/10.1016/S0032-9592(00)00152-7
  9. Kim MS, Lee YS. 2005. Effects of soy isoflavone and/or estrogen treatments on bone metabolism in ovariectomized rats. J Med Food 8: 439-445 https://doi.org/10.1089/jmf.2005.8.439
  10. Potter SM, Baum JA, Teng RJ, Stillman NF, Shay JW, Erdman Jr. 1998. Soy protein and isoflavones: their effects on blood lipids and bone density in postmenopausal women. Am J Clin Nutr 68: 1375S-1379S
  11. De Kleijin MJ, van der Schouw YT, Wilson PW. 2002. Dietary intake of phytoestrogens is associated with a favorable metabolic cardiovascular risk profile in post-menopausal U.S. women: the Framingham study. J Nutr 132: 276-282
  12. Coward L, Barnes NC, Setchell KDR, Barnes S. 1993. Genistein, daidzein, and their $\beta$-glucoside conjugates; Antitumor isoflavones in soybean foods from American and Asian diets. J Agric Food Chem 41: 1961-1967 https://doi.org/10.1021/jf00035a027
  13. Shin JI, Lee MS, Park OJ. 2005. Effects of soy- isoflavonoid on molecular markers related to apoptosis in mature and ovariectomized female rats, and mammalian tumor cell lines. Food Sci Biotechnol 14: 709-714
  14. Messina M, Hughes C. 2003. Efficacy of soyfoods and soybean isoflavone supplements for alleviating menopausal symptoms is positively related to initial hot flush frequency. J Med Food 6: 1-11 https://doi.org/10.1089/109662003765184697
  15. Xu X, Keecha SH, Wang HJ, Murphy PA, Hendrich S. 1995. Bioavailability of soybean isoflavones depends upon gut microflora in women. J Nutr 125: 2307-2315
  16. Day AJ, Dupont S, Ridley S, Rhodes MJC, Morgan MRA, Williamson G. 1998. Deglucosylation of flavonoid and isoflavonoids glycosides by human small intestine and liver $\beta$-glucosidase activity. FEBS Lett 436: 71-75 https://doi.org/10.1016/S0014-5793(98)01101-6
  17. Izumi T, Piskula MK, Osawa S, Obata A, Tobe K, Saito M. 2000. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in human. J Nutr 130: 1695-1699
  18. Pyo YH, Lee YC. 2006. Mevinolin production by Monascus pilosus KFRI-1140 (IFO 480) in solid state fermentation using soymeal. Food Sci Biotechnol 15: 647-649
  19. Matsuda S, Norimoto F, Matsumoto Y, Ohba R, Teramoto Y, Ohta N, Ueda S. 1994. Solubilization of novel isoflavone glycoside-hydrolyzing $\beta$-glucosidase from Lactobacillus casei subsp. rhamnosus. J Ferment Bioeng 77: 439-441 https://doi.org/10.1016/0922-338X(94)90021-3
  20. Hendrickson L, Davis CR, Roach C, Nguyen DK, Aldrich T, McAca PC, Reeves CD. 1999. Lovastatin biosynthesis in Aspergillus terreus: characterization of blocked mutants, enzyme activities and a multifunctional polyketide synthase gene. Chem Biology 6: 429-439 https://doi.org/10.1016/S1074-5521(99)80061-1
  21. Claudio C, Laura L. 2003. Effects of statins on lipoprotein fractions. Intern Congr Series 1253: 247-252 https://doi.org/10.1016/S0531-5131(03)00787-8
  22. Park YK, Alencar, SM, Nery IA, Agular CL, Pacheco TARC. 2001. Enrichment of isoflavone aglycone in extracted soybean isoflavones by heat and fungal $\beta$-gluco-sidase. Food Sci Biotechnol 34: 14-18
  23. Tsangalis D, Ashton JE, Mcgill AEJ, Shah NP. 2002. Enzymic transformation of isoflavone phytoestrogens in soymilk by $\beta$-glucosidase-producing bifidobacteria. J Food Sci 67: 3104-3113 https://doi.org/10.1111/j.1365-2621.2002.tb08866.x
  24. Friedrich J, Zuzek M, Bencina M, Cimerman A, Strancar A, Radez I. 1995. High performance liquid chromatographic analysis of mevinolin as mevinolinic acid in fermentation broths. J Chromatogr A 704: 363-367 https://doi.org/10.1016/0021-9673(95)00096-6
  25. Novak N, Gerdin S, Berovic M. 1997. Increased lovastatin formation by Aspergillus terreus using repeated fed-batch process. Biotechnol Lett 19: 947-948 https://doi.org/10.1023/A:1018322628333
  26. Casas Lopez JL, Sanchez Perez JA, Fernandez Sevilla JM. 2003. Production of lovastatin by Aspergillus terreus: effects of the C:N ratio and the principal nutrients on growth and metabolite production. Enzyme Microb Tech 33: 270-277 https://doi.org/10.1016/S0141-0229(03)00130-3
  27. Setchell KDR, Brown MN, Zimmer-Nechemias L, Wolfe BE, Brashear WT, Kirschner AS. 2002. Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am J Clin Nutr 76: 447-453 https://doi.org/10.1093/ajcn/76.2.447
  28. Pyo YH. 2006. Optimum condition for production of mevinolin from the soybean fermented with Monascus sp. Korean J Food Sci Technol 38: 256-261
  29. Pyo YH, Lee TC, Lee YC. 2005. Enrichment of bioactive isoflavones in soymilk fermented with $\beta$-glucosidase-producing lactic acid bacteria. Food Res Intern 38: 551-559 https://doi.org/10.1016/j.foodres.2004.11.008

Cited by

  1. Effect of Unpolished Rice Vinegar Containing Monascus-Fermented Soybean on Inhibitory Activities of Tyrosinase and Elastase vol.45, pp.1, 2016, https://doi.org/10.3746/jkfn.2016.45.1.149
  2. Value addition to finger millet (Eleusine coracana) by germination and fermentation withMonascus purpureus vol.61, pp.7, 2010, https://doi.org/10.3109/09637481003757878
  3. Finger millet (Eleusine coracana) — an economically viable source for antihypercholesterolemic metabolites production by Monascus purpureus vol.47, pp.4, 2010, https://doi.org/10.1007/s13197-010-0070-9