Synthesis and Characterization of Sulfonated Poly(arylene ether) Polyimide Multiblock Copolymers for Proton Exchange Membranes

  • Lee, Hae-Seung (Macromolecular Science and Engineering Program, Macromolecules and Interfaces Institute Virginia Polytechnic Institute and State University) ;
  • Roy Abhishek (Macromolecular Science and Engineering Program, Macromolecules and Interfaces Institute Virginia Polytechnic Institute and State University) ;
  • Badami Anand S. (Macromolecular Science and Engineering Program, Macromolecules and Interfaces Institute Virginia Polytechnic Institute and State University) ;
  • McGrath James E. (Macromolecular Science and Engineering Program, Macromolecules and Interfaces Institute Virginia Polytechnic Institute and State University)
  • Published : 2007.03.31

Abstract

Novel multiblock copolymers, based on segmented sulfonated hydrophilic-hydrophobic blocks, were synthesized and investigated for their application as proton exchange membranes. A series of segmented sulfonated poly(arylene ether sulfone)-b-polyimide multiblock copolymers, with various block lengths, were synthesized via the coupling reaction between the terminal amine moieties on the hydrophilic blocks and naphthalene anhydride functionalized hydrophobic blocks. Successful imidization reactions required a mixed solvent system, comprised of NMP and m-cresol, in the presence of catalysts. Proton conductivity measurements revealed that the proton conductivity improved with increasing hydrophilic and hydrophobic block lengths. The morphological structure of the multiblock copolymers was investigated using tapping mode atomic force microscopy (TM-AFM). The AFM images of the copolymers demonstrated well-defined nanophase separated morphologies, with the changes in the block length having a pronounced effect on the phase separated morphologies of the system. The self diffusion coefficient of water, as measured by $^1H$ NMR, provided a better understanding of the transport process. Thus, the block copolymers showed higher values than Nafion, and comparable proton conductivities in liquid water, as well as under partially hydrated conditions at $80^{\circ}C$. The new materials are strong candidates for use in PEM systems.

References

  1. M. A. Hickner, H. Ghassemi, Y. S. Kim, B. Einsla, and J. E. McGrath, Chem. Rev., 104, 4587 (2004)
  2. F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski, and J. E. McGrath, J. Membrane Sci., 197, 231 (2002)
  3. A. Noshay and J. E. McGrath, Block copolymers overview and critical survey, Academic Press, 1977, p. 91
  4. B. R. Einsla, Y. T. Hong, Y. S. Kim, F. Wang, N. Gunduz, and J. E. McGrath, J. Polym. Sci.; Part A: Polym. Chem., 42, 862 (2004)
  5. B. R. Einsla, Y. S. Kim, M. A. Hickner, Y. T. Hong, M. L. Hill, B. S. Pivovar, and J. E. McGrath, J. Membrane Sci., 255, 141 (2005)
  6. Z. Hu, Y. Yin, S. Chen, O. Yamada, K. Tanaka, H. Kita, and K.-I. Okamoto, J. Polym. Sci.; Part A: Polym. Chem., 44, 2862 (2006)
  7. A. L. Rusanov, Adv. Polym. Sci., 111, 115 (1994)
  8. C. Genies, R. Mercier, B. Sillion, R. Petiaud, N. Cornet, G. Gebel, and M. Pineri, Polymer, 42, 5097 (2001) https://doi.org/10.1016/S0032-3861(00)00352-9
  9. C. Genies, R. Mercier, B. Sillion, N. Cornet, G. Gebel, and M. Pineri, Polymer, 42, 359 (2001) https://doi.org/10.1016/S0032-3861(00)00352-9
  10. A. S. Badami, H.-S. Lee, Y. Li, A. Roy, H. Wang, and J. E. McGrath, Prepr. Pap., Am. Chem. Soc., Div. Fuel Chem., 51, 612 (2006)
  11. A. Roy, H.-S. Lee, A. S. Badami, and J. E. McGrath, Prepr. Pap., Am. Chem. Soc., Div. Fuel Chem., 51, 660 (2006)
  12. A. Roy, M. Hickner, X. Yu, Y. Li, T. Glass, and J. E. McGrath, J. Polym. Sci.; Part B: Polym. Phys., 44, 2226 (2006)
  13. M. Sankir, V. A. Bhanu, W. L. Harrison, H. Ghassemi, K. B. Wiles, T. E. Glass, A. E. Brink, M. H. Brink, and J. E. McGrath, J. Appl. Polym. Sci., 100, 4595 (2006)
  14. E. O. Stejskal and J. E. Tanner, J. Chem. Phys., 42, 288 (1965)
  15. X. Guo, J. Fang, T. Watari, K. Tanaka, H. Kita, and K.-I. Okamoto, Macromolecules, 35, 6707 (2002)