DOI QR코드

DOI QR Code

Efficient Edge Detection in Noisy Images using Robust Rank-Order Test

잡음영상에서 로버스트 순위-순서 검정을 이용한 효과적인 에지검출

  • Lim, Dong-Hoon (Department of Information Statistics and RINS, RICIC, Gyeongsang National University)
  • 임동훈 (경상대학교 정보통계학과)
  • Published : 2007.03.31

Abstract

Edge detection has been widely used in computer vision and image processing. We describe a new edge detector based on the robust rank-order test which is a useful alternative to Wilcoxon test. Our method is based on detecting pixel intensity changes between two neighborhoods with a $r{\times}r$ window using an edge-height model to perform effectively on noisy images. Some experiments of our robust rank-order detector with several existing edge detectors are carried out on both synthetic images and real images with and without noise.

References

  1. 임동훈, 박은희(2001). 잡음영상에서 에지검출을 위한 이표본 검정법, <응용통계연구>, 14, 149-160
  2. Bovik, A. C., Huang, T. S. and Munson, D. C. (1986). Nonparametric tests for edge detection in noise, Pattern Recognition, 19, 209-219 https://doi.org/10.1016/0031-3203(86)90011-7
  3. Canny, J. (1986). A computational approach to edge detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, 8, 679-698 https://doi.org/10.1109/TPAMI.1986.4767851
  4. Feltovich, N. (2003). Nonparametric tests of differences in medians: comparison of the Wilcoxon-Mann-Whitney and robust rank-order tests, Experimental Economics, 6, 273-297 https://doi.org/10.1023/A:1026273319211
  5. Fesharaki, M. N. and Hellestrand, G. R. (1994). A New Edge Detection Algorithm Based on a Statistical Approach, In Proceeding, Speech, Image Processing and Neural Networks, Hong Kong, 1, 21-24
  6. Fligner, M. A. and Pollicello, G. E. (1981). Robust rank procedures for the Behrens-Fisher problem, Journal of the American Statistical Association, 16, 162-168
  7. Gonzalez, R. C. and Woods, R. E. (1993). Digital Image Processing, Addison-Wesley Publishing company
  8. Lim, D. H. (2006). Robust edge detection in noisy images, Computational Statistics & Data Analysis, 50, 803-812 https://doi.org/10.1016/j.csda.2004.10.005
  9. Lim, D. H. and Jang, S. J. (2002). Comparison of two-sample tests for edge detection in noisy images, Journal of the Royal Statistical Society, Ser. D, -The Statistician, 51, 21-30 https://doi.org/10.1111/1467-9884.00295
  10. Lyvers, E. P., Mitchell, O. R., Akey, M. L. and Reeves, A. P. (1989). Subpixel measurements using a moment-based edge operator, IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 1293-1309 https://doi.org/10.1109/34.41367
  11. Pratt, W. (1978). Digital Image Processing, John Wiley & Sons
  12. Siegel, S. and Castellan, N. J. (1988). Nonparametric Statistics for the Behavioral Sciences, McGraw-Hill Humanities, New York