DOI QR코드

DOI QR Code

A Study on the Isoprene Emissioin Rates from Deciduous Tree(Quercus Mongolica Fischer)

낙엽수(신갈나무)로부터 배출되는 이소프렌 배출속도 측정 연구

Kim, Ki-Joon;Kim, Jo-Chun;Lim, Yong-Jae;Son, Youn-Suk;SunWoo, Young;Cho, Kyu-Tak
김기준;김조천;임용재;손윤석;선우영;조규탁

  • Published : 2007.03.28

Abstract

The standard emission rate(ERs) of isoprene was quantitatively measured in situ from Quercus mongolica Fischer that dominates more than about 85% of domestic oak trees. The ERs values in spring and summer were similar to 64.4 and 58.1 (${\mu}gC/gdw/hr$), respectively. The ERs in autumn, 7.06(${\mu}gC/gdw/hr$), was about $8{\sim}9$ times lower than those in spring and summer. The coefficient of determination ($r^2$) between ERs and $C_L\;C_T$ ranged from 0.593 to 0.836. The correlation coefficients between the ERs and PAR. the ER and temperature suggested that ERs have strong correlation with PAR(photosynthetically active radiation) and temperature. In addition, the high values of PAR, temperature, and ERs were found in the time zone of $15:00{\sim}17:00$(spring), $15:00{\sim}16:00$(summer), and $14:00{\sim}15:00$(autumn).

Keywords

Isoprene;Deciduous tree;ERs;NVOC;PAR

References

  1. 환경부, 2003, 대기 환경 연보
  2. Guenther A., Hewitt, C. N., Erickson, D., Fall, R. Beron, C. 1995, A global model of natural volatile organic compound emissions, J. Geophys. Res. 100, 8873-8892 https://doi.org/10.1029/94JD02950
  3. Fehsenfeld F., Calvert, J., Fall, R., Goldan, P., Guenther, A. B., 1992, Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry. Global Biochemical Cycles, 6, 389-430 https://doi.org/10.1029/92GB02125
  4. Chameides W. L., Linsay, R. W., Richardson, J., Kiang, C. S., 1988, The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study, Science, 241, 1473-1475 https://doi.org/10.1126/science.3420404
  5. Trapp D., Cooke, K. M., Fischer, H., Bonsang, B., Zitzelsberger, R. U., Seuwen, R., Schiller, C., 2001, Isoprene and its degradation products methyl vinyl ketone, methacrolein and formaldehyde in a eucalyptus, Chemosphere-Global Change Science, 3, 295-307 https://doi.org/10.1016/S1465-9972(01)00012-5
  6. Nunes, T. V., Pio, C. A., 2001, Emission of volatile organic compounds from Portuguese eucalyptus forests, Chernosphere-Global Change Science, 3, 239-248 https://doi.org/10.1016/S1465-9972(01)00007-1
  7. Geron, C., Guenther, A., Greenberg, J., Loescher, H.W., Clark, D., Baker, B., 2002, Biogenic volatile organic compound emissions from a lowland tropical wet forest in Costa Rica, Atmospheric Environment, 36, 3793-3802 https://doi.org/10.1016/S1352-2310(02)00301-1
  8. Derwent R. G., Jenkin, M. E., Saunders, S. M., Pilling, M. J., 1998, Photochemical ozone creation potentials for organic compounds in North West Europe calculated with a master chemical mechanism. Atmospheric Environment, 32, 2429-2441 https://doi.org/10.1016/S1352-2310(98)00053-3
  9. Isidorov, V., 1993, Volatile emissions of plants: composition, emission rate, and ecological significance, Department of Chemistry, St. Petersburg University, St. Petersburg
  10. Went F. W., 1960, Organic matter in the atmosphere and its possible relation to petroleumformation, Proc. Nat. Acad, Sci, U.S.A, 46, 212-221
  11. Guenther, A., Zimmerman, P. R., Wildermuth, M, 1994, Natural volatile organic compound emission rate estimates for U.S. woodland lakdscapes, Atmospheric Environment, 32(10), 1825-1833 https://doi.org/10.1016/S1352-2310(97)00482-2
  12. Lamb, B., Pierce, T., Baldocchi, D., Allwine, G., Dilts, S., Westberg, H., Geron, C., Guenther, A., Klinger, L., Harley, P., Zimmerman, P. R., 1996, Evaluation of forest canopy models for estimating isoprene emissions. J. Geophy. Res., 101 (D17), 22787- 22797 https://doi.org/10.1029/96JD00056
  13. Benjamin, M. T., Winer, A.M., 1998, Estimatinf the ozone-forming potential of urban trees and shurbs, Atmospheric Environment, 31(1), 53-68
  14. Karlik, J. F., Winer, A. M., 2001, Measured isoprene emission rates of plants in California landscapes: comparison to estimates from taxonomic relationships, Atmospheric Environment, 35, 1123-1131 https://doi.org/10.1016/S1352-2310(00)00258-2
  15. Sharkey, T. D., Singsaas, E. L., Vanderveer P. J., Geron, C. 1996, Field measurements of isoprene emission from trees in response to temperature and light, Tree Physiology, 16, 649-654 https://doi.org/10.1093/treephys/16.7.649
  16. Guenther, A. B., Monson, R. K. and Fall, R., 1991, Isoprene and Monoterpene emission rate Variability : observation with Eualyptus and emission rate algorithm development. J. Geophy. Res., D6, 10799-10808
  17. Kim, J. C., 2001, Factors controlling natural VOC emissions in a southeastern US pine forest, Atmospheric Environment, 35, 3279- 3292 https://doi.org/10.1016/S1352-2310(00)00522-7
  18. Geron, C., Harley, P and Guenther, A., 2001, Isoprene emission capacity for US tree species, Atmospheric Environment, 35(19), 3341-3352 https://doi.org/10.1016/S1352-2310(00)00407-6
  19. Klinger, Li, Q. -J., Guenther, J. P., Greenberg, Baker, B. and Bai, J. -H., 2002, Assessment of volatile organi compound emissions from ecosystem of china. Journal of Geophysical Research, 107(D21), 4603-6424 https://doi.org/10.1029/2001JD001076
  20. 김조천, 김기준, 홍지형, 선우영, 임수길, 2004, 여름철 참나무속의 이소프렌 배출특성 비교에 관한 연구, 한국대기환경학회, 20(1), 111-118
  21. Kesselmeier, J., L. Schafer, P. Ciccioli, E. Brancaleoni, A. Cecinato, M. Frattoni, P. Foster, V. Jacob, J. Denis, J.L. Fugit, L. Dutaur, and L. Torres (1996) Emission of monoterpenes and isoprene from amediterranean oak species Quercus ilex L. measured within the bema (Biogenic emissions in the mediterranean area) project, Atmospheric Environment, 30(10-11), 1841-1850 https://doi.org/10.1016/1352-2310(95)00376-2
  22. Winer, A. M., Fitz, D. R. and Miller, P. R., 1983, Investigation of the role of natural hydrocarbons in photochemical smog formation in Calif., Contract #A0-056-32, Air Resour. Board, Scaramento
  23. Monson, R. K., Lerdau, M. T., Sharkey, T. D., Schimel, D. S., Fall, R., 1995, Biological aspects of constructing volatile organic compound emission inventories, Atmospheric Environment, 29(21), 2989-3002 https://doi.org/10.1016/1352-2310(94)00360-W

Cited by

  1. Variations of BVOCs Emission Characteristics according to Increasing PAR vol.28, pp.1, 2012, https://doi.org/10.5572/KOSAE.2012.28.1.077