Comparison of Nonparametric Maximum Likelihood and Bayes Estimators of the Survival Function Based on Current Status Data



Kim, Hee-Jeong;Kim, Yong-Dai;Son, Young-Sook

  • 발행 : 2007.04.30


In this paper, we develop a nonparametric Bayesian methodology of estimating an unknown distribution function F at the given survival time with current status data under the assumption of Dirichlet process prior on F. We compare our algorithm with the nonparametric maximum likelihood estimator through application to simulated data and real data.


Current status data;Dirichlet process prior;MCMC algorithm;Bayesian estimation;nonparametric maximum likelihood estimation


  1. Doss, H. (1994). Bayesian nonparametric estimation for incomplete data via successive substitution sampling. The Annals of Statistics, 22, 1763-1786
  2. Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. The Annals of Statistics, 1, 209-230
  3. Ghosh, J. K. and Ramamoorthi. R. V. (2003). Bayesian Nonparametrics. Springer, New York
  4. Lawless, J. F. (2003). Statistical Models and Methods for Lifetime Data. 2nd ed, John Wiley & Sons, New York
  5. Meeker, W. Q. and Escobar, L. A. (1998). Statistical Methods for Reliability Data. John Wiley & Sons, New York
  6. Nelson, W. B. (1982). Applied Life Data Analysis. John Wiley & Sons, New York
  7. Sethuraman, J. (1994). A constructive definition of dirichlet priors. Statistica Sinica, 4, 639-650