DOI QR코드

DOI QR Code

GALOIS GROUPS OF MODULES AND INVERSE POLYNOMIAL MODULES

  • Park, Sang-Won ;
  • Jeong, Jin-Sun
  • Published : 2007.05.31

Abstract

Given an injective envelope E of a left R-module M, there is an associative Galois group Gal$({\phi})$. Let R be a left noetherian ring and E be an injective envelope of M, then there is an injective envelope $E[x^{-1}]$ of an inverse polynomial module $M[x^{-1}]$ as a left R[x]-module and we can define an associative Galois group Gal$({\phi}[x^{-1}])$. In this paper we describe the relations between Gal$({\phi})$ and Gal$({\phi}[x^{-1}])$. Then we extend the Galois group of inverse polynomial module and can get Gal$({\phi}[x^{-s}])$, where S is a submonoid of $\mathbb{N}$ (the set of all natural numbers).

Keywords

injective module;injective envelope;Galois group;inverse polynomial module

References

  1. Z. Lin, Injectivity of modules of generalized inverse polynomials, Comm. Algebra 29 (2001), no. 2, 583-592 https://doi.org/10.1081/AGB-100001525
  2. A. S. McKerrow, On the injective dimension of modules of power series, Quart. J. Math. Oxford Ser. (2) 25 (1974), 359-368 https://doi.org/10.1093/qmath/25.1.359
  3. L. Melkersson, Content and inverse polynomials on Artinian modules, Comm. Algebra 26 (1998), no. 4, 1141-1145 https://doi.org/10.1080/00927879808826189
  4. S. Park, Inverse polynomials and injective covers, Comm. Algebra 21 (1993), no. 12, 4599-4613 https://doi.org/10.1080/00927879308824819
  5. S. Park, The Macaulay-Northcott functor, Arch. Math. (Basel) 63 (1994), no. 3, 225-230 https://doi.org/10.1007/BF01189824
  6. S. Park, Gorenstein rings and inverse polynomials, Comm. Algebra 28 (2000), no. 2, 785-789 https://doi.org/10.1080/00927870008826859
  7. S. Park, The general structure of inverse polynomial modules, Czechoslovak Math. J. 51 (126) (2001), no. 2, 343-349 https://doi.org/10.1023/A:1013798914813
  8. S. Park and E. Cho, Injective and projective properties of R[x]-modules, Czechoslovak Math. J. 54 (129) (2004), no. 3, 573-578 https://doi.org/10.1007/s10587-004-6409-5
  9. D. G. Northcott, Injective envelopes and inverse polynomials, J. London Math. Soc. (2) 8 (1974), 290-296 https://doi.org/10.1112/jlms/s2-8.2.290

Cited by

  1. Generalized Inverse Power Series Modules vol.39, pp.8, 2011, https://doi.org/10.1080/00927872.2010.491101