DOI QR코드

DOI QR Code

CUBIC OPERATOR NORM ON Xλ SPACE

  • Jung, Soon-Mo
  • Published : 2007.05.31

Abstract

By applying ideas from [M. S. Moslehian, et al., Norms of operators in $X_{\lambda}$ spaces, Appl. Math. Lett. (2007), doi:10.1016/j.aml.2006. 11.009], we investigate the norm of the cubic operator on the function space $X_{\lambda}$.

Keywords

cubic functional equation;cubic operator;operator norm$X_{\lambda}$ space

References

  1. S. Czerwik, Functional equations and inequalities in several variables, World Scientific Publishing Co., Inc., River Edge, NJ, 2002
  2. S. Czerwik and K. Dlutek, Cauchy and Pexider operators in some function spaces, Functional equations, inequalities and applications, 11-19, Kluwer Acad. Publ., Dordrecht, 2003
  3. K.-W. Jun and H.-M. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274 (2002), 867-878 https://doi.org/10.1016/S0022-247X(02)00415-8
  4. M. S. Moslehian, T. Riedel, and A. Saadatpour, Norms of operators in X¸ spaces, Appl. Math. Lett. (2007), doi:10.1016/j.aml.2006.11.009 https://doi.org/10.1016/j.aml.2006.11.009
  5. S.-M. Jung and T.-S. Kim, A fixed point approach to the stability of cubic functional equation, Boletin de la Sociedad Matematica Mexicana 12 (2006), 51-57

Cited by

  1. Pexider type operators and their norms in X λ spaces vol.59, pp.4, 2009, https://doi.org/10.1007/s10587-009-0076-5